BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36701968)

  • 81. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
    Sarker A; Gonzalez G
    J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A Web Application for Adrenal Incidentaloma Identification, Tracking, and Management Using Machine Learning.
    Bala W; Steinkamp J; Feeney T; Gupta A; Sharma A; Kantrowitz J; Cordella N; Moses J; Drake FT
    Appl Clin Inform; 2020 Aug; 11(4):606-616. PubMed ID: 32937677
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Characterization of Change and Significance for Clinical Findings in Radiology Reports Through Natural Language Processing.
    Hassanpour S; Bay G; Langlotz CP
    J Digit Imaging; 2017 Jun; 30(3):314-322. PubMed ID: 28050714
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Automatic Disease Annotation From Radiology Reports Using Artificial Intelligence Implemented by a Recurrent Neural Network.
    Lee C; Kim Y; Kim YS; Jang J
    AJR Am J Roentgenol; 2019 Apr; 212(4):734-740. PubMed ID: 30699011
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Highly accurate classification of chest radiographic reports using a deep learning natural language model pre-trained on 3.8 million text reports.
    Bressem KK; Adams LC; Gaudin RA; Tröltzsch D; Hamm B; Makowski MR; Schüle CY; Vahldiek JL; Niehues SM
    Bioinformatics; 2021 Jan; 36(21):5255-5261. PubMed ID: 32702106
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Automatic Classification of Thyroid Findings Using Static and Contextualized Ensemble Natural Language Processing Systems: Development Study.
    Shin D; Kam HJ; Jeon MS; Kim HY
    JMIR Med Inform; 2021 Sep; 9(9):e30223. PubMed ID: 34546183
    [TBL] [Abstract][Full Text] [Related]  

  • 89. What Influences the Way Radiologists Express Themselves in Their Reports? A Quantitative Assessment Using Natural Language Processing.
    Crombé A; Seux M; Bratan F; Bergerot JF; Banaste N; Thomson V; Lecomte JC; Gorincour G
    J Digit Imaging; 2022 Aug; 35(4):993-1007. PubMed ID: 35318544
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Automatic Assignment of Radiology Examination Protocols Using Pre-trained Language Models with Knowledge Distillation.
    Lau W; Aaltonen L; Gunn M; Yetisgen M
    AMIA Annu Symp Proc; 2021; 2021():668-676. PubMed ID: 35308920
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Training and intrinsic evaluation of lightweight word embeddings for the clinical domain in Spanish.
    Chiu C; Villena F; Martin K; Núñez F; Besa C; Dunstan J
    Front Artif Intell; 2022; 5():970517. PubMed ID: 36213168
    [TBL] [Abstract][Full Text] [Related]  

  • 92. MetaboListem and TABoLiSTM: Two Deep Learning Algorithms for Metabolite Named Entity Recognition.
    Yeung CS; Beck T; Posma JM
    Metabolites; 2022 Mar; 12(4):. PubMed ID: 35448463
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Drug knowledge discovery via multi-task learning and pre-trained models.
    Li D; Xiong Y; Hu B; Tang B; Peng W; Chen Q
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):251. PubMed ID: 34789238
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The learning vector quantization algorithm applied to automatic text classification tasks.
    Martín-Valdivia MT; Ureña-López LA; García-Vega M
    Neural Netw; 2007 Aug; 20(6):748-56. PubMed ID: 17368839
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Neural machine translation of clinical texts between long distance languages.
    Soto X; Perez-de-Viñaspre O; Labaka G; Oronoz M
    J Am Med Inform Assoc; 2019 Dec; 26(12):1478-1487. PubMed ID: 31334764
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Hierarchical sequence labeling for extracting BEL statements from biomedical literature.
    Liu S; Shao Y; Qian L; Zhou G
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):63. PubMed ID: 30961584
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Automatic Detection of Distant Metastasis Mentions in Radiology Reports in Spanish.
    Ahumada R; Dunstan J; Rojas M; Peñafiel S; Paredes I; Báez P
    JCO Clin Cancer Inform; 2024 Jan; 8():e2300130. PubMed ID: 38194615
    [TBL] [Abstract][Full Text] [Related]  

  • 98. An open source corpus and automatic tool for section identification in Spanish health records.
    de la Iglesia I; Vivó M; Chocrón P; Maeztu G; Gojenola K; Atutxa A
    J Biomed Inform; 2023 Sep; 145():104461. PubMed ID: 37536643
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A computational ecosystem to support eHealth Knowledge Discovery technologies in Spanish.
    Piad-Morffis A; Gutiérrez Y; Almeida-Cruz Y; Muñoz R
    J Biomed Inform; 2020 Sep; 109():103517. PubMed ID: 32712157
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Text data augmentation and pre-trained Language Model for enhancing text classification of low-resource languages.
    Ziyaden A; Yelenov A; Hajiyev F; Rustamov S; Pak A
    PeerJ Comput Sci; 2024; 10():e1974. PubMed ID: 38660166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.