These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 36702256)
1. Effect of microchannel geometry and linker molecules on surface immobilization efficiency of proteins in microfluidic devices. Chakraborty S; Jaitpal S; Acharya S; Paul D J Biotechnol; 2023 Feb; 364():31-39. PubMed ID: 36702256 [TBL] [Abstract][Full Text] [Related]
2. Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel. Foley JO; Mashadi-Hossein A; Fu E; Finlayson BA; Yager P Lab Chip; 2008 Apr; 8(4):557-64. PubMed ID: 18369510 [TBL] [Abstract][Full Text] [Related]
3. Effect of linkers on immobilization of scFvs with biotin-streptavidin interaction. Ikonomova SP; Le MT; Kalla N; Karlsson AJ Biotechnol Appl Biochem; 2018 Jul; 65(4):580-585. PubMed ID: 29377386 [TBL] [Abstract][Full Text] [Related]
4. Steric crowding effects on target detection in an affinity biosensor. Bonanno LM; Delouise LA Langmuir; 2007 May; 23(10):5817-23. PubMed ID: 17425345 [TBL] [Abstract][Full Text] [Related]
5. Enzyme immobilization on protein-resistant PNIPAAm brushes: impact of biotin linker length on enzyme amount and catalytic activity. Rosenthal A; Rauch S; Eichhorn KJ; Stamm M; Uhlmann P Colloids Surf B Biointerfaces; 2018 Nov; 171():351-357. PubMed ID: 30056296 [TBL] [Abstract][Full Text] [Related]
6. A supramolecular approach to enzyme immobilization in micro-channels. González-Campo A; Eker B; Gardeniers HJ; Huskens J; Jonkheijm P Small; 2012 Nov; 8(22):3531-7. PubMed ID: 22887837 [TBL] [Abstract][Full Text] [Related]
7. Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture. Ates HC; Ozgur E; Kulah H Biointerphases; 2018 Mar; 13(2):021001. PubMed ID: 29571263 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of streptavidin for immunosensors on nanostructured surfaces. Kossek S; Padeste C; Tiefenauer L J Mol Recognit; 1996; 9(5-6):485-7. PubMed ID: 9174928 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of DNA on Biosensing Devices with Nitrogen Mustard-Modified Linkers. Kurinomaru T; Kojima N; Kurita R Curr Protoc Nucleic Acid Chem; 2019 Jun; 77(1):e85. PubMed ID: 31038292 [TBL] [Abstract][Full Text] [Related]
10. Multi-step surface functionalization of polyimide based evanescent wave photonic biosensors and application for DNA hybridization by Mach-Zehnder interferometer. Melnik E; Bruck R; Hainberger R; Lämmerhofer M Anal Chim Acta; 2011 Aug; 699(2):206-15. PubMed ID: 21704776 [TBL] [Abstract][Full Text] [Related]
11. High-affinity immobilization of proteins using biotin- and GST-based coupling strategies. Hutsell SQ; Kimple RJ; Siderovski DP; Willard FS; Kimple AJ Methods Mol Biol; 2010; 627():75-90. PubMed ID: 20217614 [TBL] [Abstract][Full Text] [Related]
12. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices. Khnouf R; Karasneh D; Albiss BA Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833 [TBL] [Abstract][Full Text] [Related]
13. Reversible immobilization of proteins with streptavidin affinity tags on a surface plasmon resonance biosensor chip. Li YJ; Bi LJ; Zhang XE; Zhou YF; Zhang JB; Chen YY; Li W; Zhang ZP Anal Bioanal Chem; 2006 Nov; 386(5):1321-6. PubMed ID: 17006676 [TBL] [Abstract][Full Text] [Related]
14. Oriented antibody immobilization by site-specific UV photocrosslinking of biotin at the conserved nucleotide binding site for enhanced antigen detection. Alves NJ; Mustafaoglu N; Bilgicer B Biosens Bioelectron; 2013 Nov; 49():387-93. PubMed ID: 23800610 [TBL] [Abstract][Full Text] [Related]