These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 36702856)
41. Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar Nanocomposite Adsorbents-A Mechanistic Study. Singh P; Sarswat A; Pittman CU; Mlsna T; Mohan D ACS Omega; 2020 Feb; 5(6):2575-2593. PubMed ID: 32095682 [TBL] [Abstract][Full Text] [Related]
42. Assessment of chemically modified sugarcane bagasse for lead adsorption from aqueous medium. Dos Santos VC; Tarley CR; Caetano J; Dragunski DC Water Sci Technol; 2010; 62(2):457-65. PubMed ID: 20651453 [TBL] [Abstract][Full Text] [Related]
43. The Amine Functionalized Sugarcane Bagasse Biocomposites as Magnetically Adsorbent for Contaminants Removal in Aqueous Solution. Irawan C; Putra MD; Wijayanti H; Juwita R; Meliana Y; Nata IF Molecules; 2021 Sep; 26(19):. PubMed ID: 34641411 [TBL] [Abstract][Full Text] [Related]
44. Enhanced adsorption capacity of MgO/N-doped active carbon derived from sugarcane bagasse. Zheng X; Zhou Y; Liu X; Fu X; Peng H; Lv S Bioresour Technol; 2020 Feb; 297():122413. PubMed ID: 31761628 [TBL] [Abstract][Full Text] [Related]
45. Removal of copper ions from alembic Honorato KR; Reck Paulino IM; Oliveira AM; Bergamasco R; Vieira AMS; Gomes RG Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Aug; 39(8):1424-1438. PubMed ID: 35704782 [No Abstract] [Full Text] [Related]
46. Reutilization of waste biomass from sugarcane bagasse and orange peel to obtain carbon foams: Applications in the metal ions removal. Licona-Aguilar ÁI; Torres-Huerta AM; Domínguez-Crespo MA; Palma-Ramírez D; Conde-Barajas E; Negrete-Rodríguez MXL; Rodríguez-Salazar AE; García-Zaleta DS Sci Total Environ; 2022 Jul; 831():154883. PubMed ID: 35358521 [TBL] [Abstract][Full Text] [Related]
47. Removal of copper(II) ions from aqueous solution by modified bagasse. Jiang Y; Pang H; Liao B J Hazard Mater; 2009 May; 164(1):1-9. PubMed ID: 18790566 [TBL] [Abstract][Full Text] [Related]
48. Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study. Shah B; Mistry C; Shah A Environ Sci Pollut Res Int; 2013 Apr; 20(4):2193-209. PubMed ID: 22739768 [TBL] [Abstract][Full Text] [Related]
49. One-Step Pyrolysis Fabrication of Magnetic Bagasse Biochar Composites with Excellent Lead Adsorption Performance. Chang J; Yu S; Liao Y; Guan X; Gao H; Li Y ACS Omega; 2022 Nov; 7(47):42854-42864. PubMed ID: 36467949 [TBL] [Abstract][Full Text] [Related]
50. Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method. Jiang W; Zhang L; Guo X; Yang M; Lu Y; Wang Y; Zheng Y; Wei G Environ Technol; 2021 Jan; 42(3):337-350. PubMed ID: 31158062 [TBL] [Abstract][Full Text] [Related]
51. Adsorption performance of antimony by modified iron powder. Zhang C; Jiang H; Deng Y; Wang A RSC Adv; 2019 Oct; 9(54):31645-31653. PubMed ID: 35527945 [TBL] [Abstract][Full Text] [Related]
52. Optimization of the Production Parameters of Composites from Sugarcane Bagasse and Iron Salts for Use in Dye Adsorption. Pereira da Silva C; Oliveira da Guarda Souza M; Lopes Dos Santos WN; Oliveira Bastos Silva L ScientificWorldJournal; 2019; 2019():8173429. PubMed ID: 31354389 [TBL] [Abstract][Full Text] [Related]
53. Cross-linked chitosan into graphene oxide-iron(III) oxide hydroxide as nano-biosorbent for Pd(II) and Cd(II) removal. Parastar M; Sheshmani S; Shokrollahzadeh S Int J Biol Macromol; 2021 Jan; 166():229-237. PubMed ID: 33122064 [TBL] [Abstract][Full Text] [Related]
54. Synthesis and application of sugarcane bagasse cellulose mixed esters. Part I: Removal of Co Elias MMC; Ferreira GMD; de Almeida FTR; Rosa NCM; Silva IA; Filgueiras JG; de Azevedo ER; da Silva LHM; Melo TMS; Gil LF; Gurgel LVA J Colloid Interface Sci; 2019 Jan; 533():678-691. PubMed ID: 30196112 [TBL] [Abstract][Full Text] [Related]
55. Optimized production, Pb(II) adsorption and characterization of alkali modified hydrochar from sugarcane bagasse. Malool ME; Keshavarz Moraveji M; Shayegan J Sci Rep; 2021 Nov; 11(1):22328. PubMed ID: 34785737 [TBL] [Abstract][Full Text] [Related]
56. Poly(methacrylic acid)-modified sugarcane bagasse for enhanced adsorption of cationic dye. Xing Y; Wang G Environ Technol; 2009 May; 30(6):611-9. PubMed ID: 19603706 [TBL] [Abstract][Full Text] [Related]
57. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Guo X; Chen F Environ Sci Technol; 2005 Sep; 39(17):6808-18. PubMed ID: 16190243 [TBL] [Abstract][Full Text] [Related]
58. Removal of antimonite (Sb(III)) from aqueous solution using a magnetic iron-modified carbon nanotubes (CNTs) composite: Experimental observations and governing mechanisms. Cheng Z; Lyu H; Shen B; Tian J; Sun Y; Wu C Chemosphere; 2022 Feb; 288(Pt 2):132581. PubMed ID: 34656624 [TBL] [Abstract][Full Text] [Related]
59. Efficient removal of antimonate and antimonite by a novel lanthanum-manganese binary oxide: Performance and mechanism. Zhang C; Wu M; Wu K; Li H; Zhang G J Hazard Mater; 2023 Jan; 442():130132. PubMed ID: 36303357 [TBL] [Abstract][Full Text] [Related]
60. Sodium alginate/magnetic hydrogel microspheres from sugarcane bagasse for removal of sulfamethoxazole from sewage water: Batch and column modeling. Prasannamedha G; Kumar PS; Shivaani S; Kokila M Environ Pollut; 2022 Aug; 307():119523. PubMed ID: 35643290 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]