These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36702886)

  • 1. Nanocrystal phononics.
    Jansen M; Tisdale WA; Wood V
    Nat Mater; 2023 Feb; 22(2):161-169. PubMed ID: 36702886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials.
    Yazdani N; Jansen M; Bozyigit D; Lin WMM; Volk S; Yarema O; Yarema M; Juranyi F; Huber SD; Wood V
    Nat Commun; 2019 Sep; 10(1):4236. PubMed ID: 31530815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices.
    Paik T; Yun H; Fleury B; Hong SH; Jo PS; Wu Y; Oh SJ; Cargnello M; Yang H; Murray CB; Kagan CR
    Nano Lett; 2017 Mar; 17(3):1387-1394. PubMed ID: 28146634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical reinforcement of polymer colloidal crystals by supercritical fluids.
    Babacic V; Varghese J; Coy E; Kang E; Pochylski M; Gapinski J; Fytas G; Graczykowski B
    J Colloid Interface Sci; 2020 Nov; 579():786-793. PubMed ID: 32673855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superstructures generated from truncated tetrahedral quantum dots.
    Nagaoka Y; Tan R; Li R; Zhu H; Eggert D; Wu YA; Liu Y; Wang Z; Chen O
    Nature; 2018 Sep; 561(7723):378-382. PubMed ID: 30232427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound and heat revolutions in phononics.
    Maldovan M
    Nature; 2013 Nov; 503(7475):209-17. PubMed ID: 24226887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collective Diffraction Effects in Perovskite Nanocrystal Superlattices.
    Toso S; Baranov D; Filippi U; Giannini C; Manna L
    Acc Chem Res; 2023 Jan; 56(1):66-76. PubMed ID: 36534898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Dislocation Theory to Minimize Defects in Artificial Solids Built with Nanocrystal Building Blocks.
    Ondry JC; Alivisatos AP
    Acc Chem Res; 2021 Mar; 54(6):1419-1429. PubMed ID: 33576596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic Cracking of Nanocrystal Superlattices.
    Diroll BT; Ma X; Wu Y; Murray CB
    Nano Lett; 2017 Oct; 17(10):6501-6506. PubMed ID: 28921994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perovskite-type superlattices from lead halide perovskite nanocubes.
    Cherniukh I; Rainò G; Stöferle T; Burian M; Travesset A; Naumenko D; Amenitsch H; Erni R; Mahrt RF; Bodnarchuk MI; Kovalenko MV
    Nature; 2021 May; 593(7860):535-542. PubMed ID: 34040208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures.
    Miszta K; de Graaf J; Bertoni G; Dorfs D; Brescia R; Marras S; Ceseracciu L; Cingolani R; van Roij R; Dijkstra M; Manna L
    Nat Mater; 2011 Sep; 10(11):872-6. PubMed ID: 21946613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing functional mesostructured materials from colloidal nanocrystal building blocks.
    Milliron DJ; Buonsanti R; Llordes A; Helms BA
    Acc Chem Res; 2014 Jan; 47(1):236-46. PubMed ID: 24004254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocrystal plasma polymerization: from colloidal nanocrystals to inorganic architectures.
    Cademartiri L; Ghadimi A; Ozin GA
    Acc Chem Res; 2008 Dec; 41(12):1820-30. PubMed ID: 19007250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals.
    Caruntu D; Rostamzadeh T; Costanzo T; Parizi SS; Caruntu G
    Nanoscale; 2015 Aug; 7(30):12955-69. PubMed ID: 26168304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation and tuning of hypersonic bandgaps in colloidal crystals.
    Cheng W; Wang J; Jonas U; Fytas G; Stefanou N
    Nat Mater; 2006 Oct; 5(10):830-6. PubMed ID: 16951677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virus-Sized Gold Nanorods: Plasmonic Particles for Biology.
    Murphy CJ; Chang HH; Falagan-Lotsch P; Gole MT; Hofmann DM; Hoang KNL; McClain SM; Meyer SM; Turner JG; Unnikrishnan M; Wu M; Zhang X; Zhang Y
    Acc Chem Res; 2019 Aug; 52(8):2124-2135. PubMed ID: 31373796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear phononics using atomically thin membranes.
    Midtvedt D; Isacsson A; Croy A
    Nat Commun; 2014 Sep; 5():4838. PubMed ID: 25204322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.