BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 36702900)

  • 21. Development of an in vivo cleavable donor plasmid for targeted transgene integration by CRISPR-Cas9 and CRISPR-Cas12a.
    Ishibashi R; Maki R; Kitano S; Miyachi H; Toyoshima F
    Sci Rep; 2022 Oct; 12(1):17775. PubMed ID: 36272994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art.
    Ciurkot K; Vonk B; Gorochowski TE; Roubos JA; Verwaal R
    J Vis Exp; 2019 May; (147):. PubMed ID: 31205318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 24. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang.
    Bin Moon S; Lee JM; Kang JG; Lee NE; Ha DI; Kim DY; Kim SH; Yoo K; Kim D; Ko JH; Kim YS
    Nat Commun; 2018 Sep; 9(1):3651. PubMed ID: 30194297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines.
    Zhang L; Zuris JA; Viswanathan R; Edelstein JN; Turk R; Thommandru B; Rube HT; Glenn SE; Collingwood MA; Bode NM; Beaudoin SF; Lele S; Scott SN; Wasko KM; Sexton S; Borges CM; Schubert MS; Kurgan GL; McNeill MS; Fernandez CA; Myer VE; Morgan RA; Behlke MA; Vakulskas CA
    Nat Commun; 2021 Jun; 12(1):3908. PubMed ID: 34162850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-efficiency nonviral CRISPR/Cas9-mediated gene editing of human T cells using plasmid donor DNA.
    Oh SA; Senger K; Madireddi S; Akhmetzyanova I; Ishizuka IE; Tarighat S; Lo JH; Shaw D; Haley B; Rutz S
    J Exp Med; 2022 May; 219(5):. PubMed ID: 35452075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Split CRISPR-Cpf1 Platform for Inducible Gene Activation.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2023; 2577():229-240. PubMed ID: 36173577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation.
    Santos L; Mention K; Cavusoglu-Doran K; Sanz DJ; Bacalhau M; Lopes-Pacheco M; Harrison PT; Farinha CM
    J Cyst Fibros; 2022 Jan; 21(1):181-187. PubMed ID: 34103250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Throughput Profiling of Cas12a Orthologues and Engineered Variants for Enhanced Genome Editing Activity.
    Zhu D; Wang J; Yang D; Xi J; Li J
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of the CRISPR-Cpf1 system with ribozyme-processed crRNA.
    Gao Z; Herrera-Carrillo E; Berkhout B
    RNA Biol; 2018; 15(12):1458-1467. PubMed ID: 30470168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Cutting and Integrating CRISPR Plasmids Enable Targeted Genomic Integration of Genetic Payloads for Rapid Cell Engineering.
    Bloemberg D; Sosa-Miranda CD; Nguyen T; Weeratna RD; McComb S
    CRISPR J; 2021 Feb; 4(1):104-119. PubMed ID: 33616439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiplexed Genome Engineering with Cas12a.
    Weisbach NR; Meijs A; Platt RJ
    Methods Mol Biol; 2021; 2312():171-192. PubMed ID: 34228291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant Gene Knockout and Knockdown by CRISPR-Cpf1 (Cas12a) Systems.
    Zhang Y; Zhang Y; Qi Y
    Methods Mol Biol; 2019; 1917():245-256. PubMed ID: 30610641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing.
    Moreno-Mateos MA; Fernandez JP; Rouet R; Vejnar CE; Lane MA; Mis E; Khokha MK; Doudna JA; Giraldez AJ
    Nat Commun; 2017 Dec; 8(1):2024. PubMed ID: 29222508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Therapeutic gene editing in haematological disorders with CRISPR/Cas9.
    Jensen TI; Axelgaard E; Bak RO
    Br J Haematol; 2019 Jun; 185(5):821-835. PubMed ID: 30864164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing.
    Kleinstiver BP; Sousa AA; Walton RT; Tak YE; Hsu JY; Clement K; Welch MM; Horng JE; Malagon-Lopez J; Scarfò I; Maus MV; Pinello L; Aryee MJ; Joung JK
    Nat Biotechnol; 2019 Mar; 37(3):276-282. PubMed ID: 30742127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy.
    Li C; Mei H; Hu Y
    Brief Funct Genomics; 2020 May; 19(3):175-182. PubMed ID: 31950135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Marker-free coselection for CRISPR-driven genome editing in human cells.
    Agudelo D; Duringer A; Bozoyan L; Huard CC; Carter S; Loehr J; Synodinou D; Drouin M; Salsman J; Dellaire G; Laganière J; Doyon Y
    Nat Methods; 2017 Jun; 14(6):615-620. PubMed ID: 28417998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement
    Sansbury BM; Wagner AM; Tarcic G; Barth S; Nitzan E; Goldfus R; Vidne M; Kmiec EB
    CRISPR J; 2019 Apr; 2():121-132. PubMed ID: 30998096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.
    Lo TW; Pickle CS; Lin S; Ralston EJ; Gurling M; Schartner CM; Bian Q; Doudna JA; Meyer BJ
    Genetics; 2013 Oct; 195(2):331-48. PubMed ID: 23934893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.