These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36702953)

  • 1. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions.
    Zaporski L; Shofer N; Bodey JH; Manna S; Gillard G; Appel MH; Schimpf C; Covre da Silva SF; Jarman J; Delamare G; Park G; Haeusler U; Chekhovich EA; Rastelli A; Gangloff DA; Atatüre M; Le Gall C
    Nat Nanotechnol; 2023 Mar; 18(3):257-263. PubMed ID: 36702953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots.
    Chekhovich EA; Ulhaq A; Zallo E; Ding F; Schmidt OG; Skolnick MS
    Nat Mater; 2017 Oct; 16(10):982-986. PubMed ID: 28783160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear spin quantum register in an optically active semiconductor quantum dot.
    Chekhovich EA; da Silva SFC; Rastelli A
    Nat Nanotechnol; 2020 Dec; 15(12):999-1004. PubMed ID: 32989238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoupling a hole spin qubit from the nuclear spins.
    Prechtel JH; Kuhlmann AV; Houel J; Ludwig A; Valentin SR; Wieck AD; Warburton RJ
    Nat Mater; 2016 Sep; 15(9):981-6. PubMed ID: 27454044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional rotation of two strongly coupled semiconductor charge qubits.
    Li HO; Cao G; Yu GD; Xiao M; Guo GC; Jiang HW; Guo GP
    Nat Commun; 2015 Jul; 6():7681. PubMed ID: 26184756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A silicon quantum-dot-coupled nuclear spin qubit.
    Hensen B; Wei Huang W; Yang CH; Wai Chan K; Yoneda J; Tanttu T; Hudson FE; Laucht A; Itoh KM; Ladd TD; Morello A; Dzurak AS
    Nat Nanotechnol; 2020 Jan; 15(1):13-17. PubMed ID: 31819245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dot spin coherence governed by a strained nuclear environment.
    Stockill R; Le Gall C; Matthiesen C; Huthmacher L; Clarke E; Hugues M; Atatüre M
    Nat Commun; 2016 Sep; 7():12745. PubMed ID: 27615704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet.
    Kawakami E; Jullien T; Scarlino P; Ward DR; Savage DE; Lagally MG; Dobrovitski VV; Friesen M; Coppersmith SN; Eriksson MA; Vandersypen LM
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11738-11743. PubMed ID: 27698123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain.
    Chekhovich EA; Hopkinson M; Skolnick MS; Tartakovskii AI
    Nat Commun; 2015 Feb; 6():6348. PubMed ID: 25704639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths.
    Dusanowski Ł; Nawrath C; Portalupi SL; Jetter M; Huber T; Klembt S; Michler P; Höfling S
    Nat Commun; 2022 Feb; 13(1):748. PubMed ID: 35136062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-orbit qubit in a semiconductor nanowire.
    Nadj-Perge S; Frolov SM; Bakkers EP; Kouwenhoven LP
    Nature; 2010 Dec; 468(7327):1084-7. PubMed ID: 21179164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.
    De Greve K; Yu L; McMahon PL; Pelc JS; Natarajan CM; Kim NY; Abe E; Maier S; Schneider C; Kamp M; Höfling S; Hadfield RH; Forchel A; Fejer MM; Yamamoto Y
    Nature; 2012 Nov; 491(7424):421-5. PubMed ID: 23151585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spin dephasing mechanism mediated by the interplay between the spin-orbit coupling and the asymmetrical confining potential in a semiconductor quantum dot.
    Li R
    J Phys Condens Matter; 2018 Oct; 30(39):395304. PubMed ID: 30141413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A valley-spin qubit in a carbon nanotube.
    Laird EA; Pei F; Kouwenhoven LP
    Nat Nanotechnol; 2013 Aug; 8(8):565-8. PubMed ID: 23892984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Notch filtering the nuclear environment of a spin qubit.
    Malinowski FK; Martins F; Nissen PD; Barnes E; Cywiński Ł; Rudner MS; Fallahi S; Gardner GC; Manfra MJ; Marcus CM; Kuemmeth F
    Nat Nanotechnol; 2017 Jan; 12(1):16-20. PubMed ID: 27694847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preserving electron spin coherence in solids by optimal dynamical decoupling.
    Du J; Rong X; Zhao N; Wang Y; Yang J; Liu RB
    Nature; 2009 Oct; 461(7268):1265-8. PubMed ID: 19865168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Transparency Induced by a Largely Purcell Enhanced Quantum Dot in a Polarization-Degenerate Cavity.
    Singh H; Farfurnik D; Luo Z; Bracker AS; Carter SG; Waks E
    Nano Lett; 2022 Oct; 22(19):7959-7964. PubMed ID: 36129824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent properties of single rare-earth spin qubits.
    Siyushev P; Xia K; Reuter R; Jamali M; Zhao N; Yang N; Duan C; Kukharchyk N; Wieck AD; Kolesov R; Wrachtrup J
    Nat Commun; 2014 May; 5():3895. PubMed ID: 24826968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Quantum Gates for Individual Nuclear Spin Qubits by Indirect Control.
    Hegde SS; Zhang J; Suter D
    Phys Rev Lett; 2020 Jun; 124(22):220501. PubMed ID: 32567913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.