These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36703341)

  • 1. Evidence on the formation of dimers of polycyclic aromatic hydrocarbons in a laminar diffusion flame.
    Faccinetto A; Irimiea C; Minutolo P; Commodo M; D'Anna A; Nuns N; Carpentier Y; Pirim C; Desgroux P; Focsa C; Mercier X
    Commun Chem; 2020 Aug; 3(1):112. PubMed ID: 36703341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimers of polycyclic aromatic hydrocarbons: the missing pieces in the soot formation process.
    Mercier X; Carrivain O; Irimiea C; Faccinetto A; Therssen E
    Phys Chem Chem Phys; 2019 Apr; 21(16):8282-8294. PubMed ID: 30945709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation.
    Kholghy MR; Kelesidis GA; Pratsinis SE
    Phys Chem Chem Phys; 2018 Apr; 20(16):10926-10938. PubMed ID: 29542752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructure Transition of Young Soot Aggregates to Mature Soot Aggregates in Diluted Diffusion Flames.
    Davis J; Molnar E; Novosselov I
    Carbon N Y; 2020 Apr; 159():255-265. PubMed ID: 32863394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame experiments at the advanced light source: new insights into soot formation processes.
    Hansen N; Skeen SA; Michelsen HA; Wilson KR; Kohse-Höinghaus K
    J Vis Exp; 2014 May; (87):. PubMed ID: 24894694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detailed Study of the Formation of Soot Precursors and Soot in Highly Controlled Ethylene(/Toluene) Counterflow Diffusion Flames.
    Gleason K; Gomez A
    J Phys Chem A; 2023 Jan; 127(1):276-285. PubMed ID: 36542816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online determination of polycyclic aromatic hydrocarbon formation from a flame soot generator.
    Mueller L; Jakobi G; Orasche J; Karg E; Sklorz M; Abbaszade G; Weggler B; Jing L; Schnelle-Kreis J; Zimmermann R
    Anal Bioanal Chem; 2015 Aug; 407(20):5911-22. PubMed ID: 25711989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Acetylene Addition to the Fuel Stream on Soot Formation and Flame Properties in an Axisymmetric Laminar Coflow Ethylene/Air Diffusion Flame.
    Xie X; Zheng S; Sui R; Luo Z; Liu S; Consalvi JL
    ACS Omega; 2021 Apr; 6(15):10371-10382. PubMed ID: 34056190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame.
    Cain J; Laskin A; Kholghy MR; Thomson MJ; Wang H
    Phys Chem Chem Phys; 2014 Dec; 16(47):25862-75. PubMed ID: 25354231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Investigation of Negative Temperature Coefficient Effects on Sooting Characteristics in a Laminar Co-flow Diffusion Flame.
    Wu H; Hu Z; Dong X; Zhang S; Cao Z; Lin SL
    ACS Omega; 2021 Jun; 6(23):15156-15167. PubMed ID: 34151095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Cylinder Polycyclic Aromatic Hydrocarbons Sampled during Diesel Engine Combustion.
    Ogbunuzor CC; Hellier PR; Talibi M; Ladommatos N
    Environ Sci Technol; 2021 Jan; 55(1):571-580. PubMed ID: 33295764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and emission of large furans and oxygenated hydrocarbons from flames.
    Johansson KO; Dillstrom T; Monti M; El Gabaly F; Campbell MF; Schrader PE; Popolan-Vaida DM; Richards-Henderson NK; Wilson KR; Violi A; Michelsen HA
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8374-9. PubMed ID: 27410045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimerization of polycyclic aromatic hydrocarbons in soot nucleation.
    Zhang HB; You X; Wang H; Law CK
    J Phys Chem A; 2014 Feb; 118(8):1287-92. PubMed ID: 24491159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress toward the Quantitative Analysis of PAHs Adsorbed on Soot by Laser Desorption/Laser Ionization/Time-of-Flight Mass Spectrometry.
    Faccinetto A; Focsa C; Desgroux P; Ziskind M
    Environ Sci Technol; 2015 Sep; 49(17):10510-20. PubMed ID: 26267485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of polycyclic aromatic hydrocarbons in kerosene and bio-kerosene soot.
    Andrade-Eiroa A; Leroy V; Dagaut P; Bedjanian Y
    Chemosphere; 2010 Mar; 78(11):1342-9. PubMed ID: 20116827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments.
    Han YM; Bandowe BAM; Wei C; Cao JJ; Wilcke W; Wang GH; Ni HY; Jin ZD; An ZS; Yan BZ
    Chemosphere; 2015 Jan; 119():1335-1345. PubMed ID: 24656973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of FRAME for Simultaneous LIF and LII Imaging in Sooting Flames Using a Single Camera.
    Mishra YN; Boggavarapu P; Chorey D; Zigan L; Will S; Deshmukh D; Rayavarapu R
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A detailed numerical study of the evolution of soot particle size distributions in laminar premixed flames.
    Appel J; Bockhorn H; Wulkow M
    Chemosphere; 2001; 42(5-7):635-45. PubMed ID: 11219689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous one-dimensional visualization of OH, polycyclic aromatic hydrocarbons, and soot in a laminar diffusion flame.
    Cignoli F; Benecchi S; Zizak G
    Opt Lett; 1992 Feb; 17(4):229-31. PubMed ID: 19784284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Formation Mechanism of Methane Explosion Soot.
    Nie B; Peng C; Wang K; Yang L
    ACS Omega; 2020 Dec; 5(49):31716-31723. PubMed ID: 33344824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.