BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36703392)

  • 1. Single step syntheses of (1S)-aryl-tetrahydroisoquinolines by norcoclaurine synthases.
    Roddan R; Sula A; Méndez-Sánchez D; Subrizi F; Lichman BR; Broomfield J; Richter M; Andexer JN; Ward JM; Keep NH; Hailes HC
    Commun Chem; 2020 Nov; 3(1):170. PubMed ID: 36703392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering a norcoclaurine synthase for one-step synthesis of (S)-1-aryl-tetrahydroisoquinolines.
    Zhang M; Huang ZY; Su Y; Chen FF; Chen Q; Xu JH; Zheng GW
    Bioresour Bioprocess; 2023 Mar; 10(1):15. PubMed ID: 38647611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric synthesis of tetrahydroisoquinolines by enzymatic Pictet-Spengler reaction.
    Nishihachijo M; Hirai Y; Kawano S; Nishiyama A; Minami H; Katayama T; Yasohara Y; Sato F; Kumagai H
    Biosci Biotechnol Biochem; 2014; 78(4):701-7. PubMed ID: 25036970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme catalysed Pictet-Spengler formation of chiral 1,1'-disubstituted- and spiro-tetrahydroisoquinolines.
    Lichman BR; Zhao J; Hailes HC; Ward JM
    Nat Commun; 2017 Apr; 8():14883. PubMed ID: 28368003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Catalytic Asymmetric Pictet-Spengler Platform as a Biomimetic Diversification Strategy toward Naturally Occurring Alkaloids.
    Scharf MJ; List B
    J Am Chem Soc; 2022 Aug; 144(34):15451-15456. PubMed ID: 35976162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of enzymatic (S)-norcoclaurine biosynthesis.
    Ilari A; Franceschini S; Bonamore A; Arenghi F; Botta B; Macone A; Pasquo A; Bellucci L; Boffi A
    J Biol Chem; 2009 Jan; 284(2):897-904. PubMed ID: 19004827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic and Chemoenzymatic Three-Step Cascades for the Synthesis of Stereochemically Complementary Trisubstituted Tetrahydroisoquinolines.
    Erdmann V; Lichman BR; Zhao J; Simon RC; Kroutil W; Ward JM; Hailes HC; Rother D
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12503-12507. PubMed ID: 28727894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacing Whole Cell Biocatalysis with a Biocompatible Pictet-Spengler Reaction for One-Pot Syntheses of Tetrahydroisoquinolines and Tryptolines.
    Andersen CM; Knudson LD; Domaille DW
    Chembiochem; 2023 Dec; 24(24):e202300464. PubMed ID: 37801398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Library of Norcoclaurine Synthases and Their Immobilization for Biocatalytic Transformations.
    Lechner H; Soriano P; Poschner R; Hailes HC; Ward JM; Kroutil W
    Biotechnol J; 2018 Mar; 13(3):e1700542. PubMed ID: 29125236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 'Dopamine-first' mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile.
    Lichman BR; Gershater MC; Lamming ED; Pesnot T; Sula A; Keep NH; Hailes HC; Ward JM
    FEBS J; 2015 Mar; 282(6):1137-51. PubMed ID: 25620686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Evidence for the Dopamine-First Mechanism of Norcoclaurine Synthase.
    Lichman BR; Sula A; Pesnot T; Hailes HC; Ward JM; Keep NH
    Biochemistry; 2017 Oct; 56(40):5274-5277. PubMed ID: 28915025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multienzyme One-Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids.
    Subrizi F; Wang Y; Thair B; Méndez-Sánchez D; Roddan R; Cárdenas-Fernández M; Siegrist J; Richter M; Andexer JN; Ward JM; Hailes HC
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18673-18679. PubMed ID: 34101966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multienzyme One-Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids.
    Subrizi F; Wang Y; Thair B; Méndez-Sánchez D; Roddan R; Cárdenas-Fernández M; Siegrist J; Richter M; Andexer JN; Ward JM; Hailes HC
    Angew Chem Weinheim Bergstr Ger; 2021 Aug; 133(34):18821-18827. PubMed ID: 38505091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalytic production of tetrahydroisoquinolines.
    Ruff BM; Bräse S; O'Connor SE
    Tetrahedron Lett; 2012 Feb; 53(9):1071-1074. PubMed ID: 22966211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and evaluation of 3-substituted analogues of 1,2,3,4-tetrahydroisoquinoline as inhibitors of phenylethanolamine N-methyltransferase.
    Grunewald GL; Sall DJ; Monn JA
    J Med Chem; 1988 Apr; 31(4):824-30. PubMed ID: 3351861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of Enantioselectivity in Nature: The Case of (S)-Norcoclaurine.
    Ghirga F; Quaglio D; Ghirga P; Berardozzi S; Zappia G; Botta B; Mori M; D'Acquarica I
    Chirality; 2016 Mar; 28(3):169-80. PubMed ID: 26729048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Enzyme (
    Salvatti BA; Chagas MA; Fernandes PO; Ladeira YFX; Bozzi AS; Valadares VS; Valente AP; de Miranda AS; Rocha WR; Maltarollo VG; Moraes AH
    J Chem Inf Model; 2024 Jun; 64(11):4462-4474. PubMed ID: 38776464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous Synthesis of Tetrahydroisoquinoline Derivatives from Dietary Factors: Neurotoxicity Assessment on a 3D Neurosphere Culture.
    Aro R; Nachtergael A; Palmieri C; Ris L; Duez P
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of norcoclaurine synthase in Coptis japonica.
    Minami H; Dubouzet E; Iwasa K; Sato F
    J Biol Chem; 2007 Mar; 282(9):6274-82. PubMed ID: 17204481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies on norcoclaurine synthase of benzylisoquinoline alkaloid biosynthesis: an enzymatic Pictet-Spengler reaction.
    Luk LY; Bunn S; Liscombe DK; Facchini PJ; Tanner ME
    Biochemistry; 2007 Sep; 46(35):10153-61. PubMed ID: 17696451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.