BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36703446)

  • 1. Mapping the optoelectronic property space of small aromatic molecules.
    Wilbraham L; Smajli D; Heath-Apostolopoulos I; Zwijnenburg MA
    Commun Chem; 2020 Feb; 3(1):14. PubMed ID: 36703446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping binary copolymer property space with neural networks.
    Wilbraham L; Sprick RS; Jelfs KE; Zwijnenburg MA
    Chem Sci; 2019 May; 10(19):4973-4984. PubMed ID: 31183046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thieno[3,4-b]thiophene-Based Novel Small-Molecule Optoelectronic Materials.
    Zhang C; Zhu X
    Acc Chem Res; 2017 Jun; 50(6):1342-1350. PubMed ID: 28375613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational study on optoelectronic and charge transport properties of diketopyrrolopyrrole-based A-D-A-D-A structure molecules for organic solar cells.
    Luo D; Jin R; Han X; Li K
    J Mol Model; 2019 Nov; 25(11):339. PubMed ID: 31705321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenothiazine functional materials for organic optoelectronic applications.
    Gangadhar PS; Reddy G; Prasanthkumar S; Giribabu L
    Phys Chem Chem Phys; 2021 Jul; 23(28):14969-14996. PubMed ID: 34231592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.
    Salzmann I; Heimel G; Oehzelt M; Winkler S; Koch N
    Acc Chem Res; 2016 Mar; 49(3):370-8. PubMed ID: 26854611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quinoid-Aromatic Resonance for Very Small Optical Energy Gaps in Small-Molecule Organic Semiconductors: A Naphthodithiophenedione-oligothiophene Triad System.
    Kawabata K; Takimiya K
    Chemistry; 2021 Nov; 27(63):15660-15670. PubMed ID: 34529287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Organic-Inorganic Hybrid Heterostructured Semiconductors via High-Throughput Materials Screening for Optoelectronic Applications.
    Li Y; Yang J; Zhao R; Zhang Y; Wang X; He X; Fu Y; Zhang L
    J Am Chem Soc; 2022 Sep; 144(36):16656-16666. PubMed ID: 36037287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the potential of boron-doped nanographene as efficient charge transport and nonlinear optical material: A first-principles study.
    Irfan A; Chaudhry AR; Muhammad S; Al-Sehemi AG
    J Mol Graph Model; 2017 Aug; 75():209-219. PubMed ID: 28586703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules.
    Li X; Maffettone PM; Che Y; Liu T; Chen L; Cooper AI
    Chem Sci; 2021 Aug; 12(32):10742-10754. PubMed ID: 34476057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COMPAS-2: a dataset of cata-condensed hetero-polycyclic aromatic systems.
    Mayo Yanes E; Chakraborty S; Gershoni-Poranne R
    Sci Data; 2024 Jan; 11(1):97. PubMed ID: 38242917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing of benzodithiophene core-based small molecular acceptors for efficient non-fullerene organic solar cells.
    Mehboob MY; Khan MU; Hussain R; Hussain R; Ayub K; Sattar A; Ahmad MK; Irshad Z; Saira ; Adnan M
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 244():118873. PubMed ID: 32889342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of different aromatic conjugated bridges on optoelectronic properties of diketopyrrolopyrrole-based donor materials for organic photovoltaics.
    Shafiq UrRehman ; Alam A; Bibi S; Sadaf S; Khan SR; Shoaib M; Khan AQ; Khan M; UrRehman W
    J Mol Model; 2020 May; 26(6):154. PubMed ID: 32451633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Screening Approach for the Optoelectronic Properties of Conjugated Polymers.
    Wilbraham L; Berardo E; Turcani L; Jelfs KE; Zwijnenburg MA
    J Chem Inf Model; 2018 Dec; 58(12):2450-2459. PubMed ID: 29940733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Synthesis and Optoelectronic Applications for Tellurophene-Based Small Molecules and Polymers.
    Wu X; Lv L; Hu L; Shi Q; Peng A; Huang H
    Chemphyschem; 2019 Oct; 20(20):2600-2607. PubMed ID: 31179624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and properties of intermediate-sized narrow band-gap conjugated molecules relevant to solution-processed organic solar cells.
    Liu X; Sun Y; Hsu BB; Lorbach A; Qi L; Heeger AJ; Bazan GC
    J Am Chem Soc; 2014 Apr; 136(15):5697-708. PubMed ID: 24655075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving optoelectronic and charge transport properties of D-π-D type diketopyrrolopyrrole-pyrene derivatives as multifunctional materials for organic solar cell applications.
    Jin R; Li K; Han X
    RSC Adv; 2019 Jul; 9(39):22597-22603. PubMed ID: 35519482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-Processed Anatase Titania Nanowires: From Hyperbranched Design to Optoelectronic Applications.
    Wu WQ; Xu YF; Chen HY; Kuang DB; Su CY
    Acc Chem Res; 2019 Mar; 52(3):633-644. PubMed ID: 30668116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications.
    Roknuzzaman M; Zhang C; Ostrikov KK; Du A; Wang H; Wang L; Tesfamichael T
    Sci Rep; 2019 Jan; 9(1):718. PubMed ID: 30679678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.