These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. DNA hypomethylation in wood frog liver under anoxia and dehydration stresses. Kupakuwana P; Singh G; Storey KB Comp Biochem Physiol B Biochem Mol Biol; 2024; 274():111005. PubMed ID: 38969165 [TBL] [Abstract][Full Text] [Related]
25. Role of unfolded protein response and ER-associated degradation under freezing, anoxia, and dehydration stresses in the freeze-tolerant wood frogs. Niles J; Singh G; Storey KB Cell Stress Chaperones; 2023 Jan; 28(1):61-77. PubMed ID: 36346580 [TBL] [Abstract][Full Text] [Related]
26. Reversible Histone Modifications Contribute to the Frozen and Thawed Recovery States of Wood Frog Brains. Bloskie T; Taiwo OO; Storey KB Biomolecules; 2024 Jul; 14(7):. PubMed ID: 39062553 [TBL] [Abstract][Full Text] [Related]
27. In defense of proteins: Chaperones respond to freezing, anoxia, or dehydration stress in tissues of freeze tolerant wood frogs. Storey JM; Storey KB J Exp Zool A Ecol Integr Physiol; 2019 Aug; 331(7):392-402. PubMed ID: 31276323 [TBL] [Abstract][Full Text] [Related]
28. Cold acclimation-induced up-regulation of the ribosomal protein L7 gene in the freeze tolerant wood frog, Rana sylvatica. Wu S; De Croos JN; Storey KB Gene; 2008 Nov; 424(1-2):48-55. PubMed ID: 18706984 [TBL] [Abstract][Full Text] [Related]
29. Transcript expression of the freeze responsive gene fr10 in Rana sylvatica during freezing, anoxia, dehydration, and development. Sullivan KJ; Biggar KK; Storey KB Mol Cell Biochem; 2015 Jan; 399(1-2):17-25. PubMed ID: 25280399 [TBL] [Abstract][Full Text] [Related]
30. Role of FOXO transcription factors in the tolerance of whole-body freezing in the wood frog, Rana sylvatica. Rehman S; Hadj-Moussa H; Hawkins L; Storey KB Cryobiology; 2023 Mar; 110():44-48. PubMed ID: 36539050 [TBL] [Abstract][Full Text] [Related]
31. Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog. Costanzo JP; Reynolds AM; do Amaral MC; Rosendale AJ; Lee RE PLoS One; 2015; 10(2):e0117234. PubMed ID: 25688861 [TBL] [Abstract][Full Text] [Related]
32. Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use. Sinclair BJ; Stinziano JR; Williams CM; Macmillan HA; Marshall KE; Storey KB J Exp Biol; 2013 Jan; 216(Pt 2):292-302. PubMed ID: 23255194 [TBL] [Abstract][Full Text] [Related]
33. DNA damage and repair responses to freezing and anoxia stresses in wood frogs, Rana sylvatica. Lung ZD; Storey KB J Therm Biol; 2022 Jul; 107():103274. PubMed ID: 35701025 [TBL] [Abstract][Full Text] [Related]
34. Identification and characterization of a novel freezing inducible gene, li16, in the wood frog Rana sylvatica. McNally JD; Wu SB; Sturgeon CM; Storey KB FASEB J; 2002 Jun; 16(8):902-4. PubMed ID: 12039874 [TBL] [Abstract][Full Text] [Related]
35. Freeze-responsive regulation of MEF2 proteins and downstream gene networks in muscles of the wood frog, Rana sylvatica. Aguilar OA; Hadj-Moussa H; Storey KB J Therm Biol; 2017 Jul; 67():1-8. PubMed ID: 28558931 [TBL] [Abstract][Full Text] [Related]
36. Osmolyte regulation by TonEBP/NFAT5 during anoxia-recovery and dehydration-rehydration stresses in the freeze-tolerant wood frog ( Al-Attar R; Zhang Y; Storey KB PeerJ; 2017; 5():e2797. PubMed ID: 28133564 [TBL] [Abstract][Full Text] [Related]
37. Proteomic analysis of Rana sylvatica reveals differentially expressed proteins in liver in response to anoxia, dehydration or freezing stress. Li Y; Minic Z; Hüttmann N; Khraibah A; Storey KB; Berezovski MV Sci Rep; 2024 Jul; 14(1):15388. PubMed ID: 38965296 [TBL] [Abstract][Full Text] [Related]
38. Effects of anoxic exposure on the nuclear factor of activated T cell (NFAT) transcription factors in the stress-tolerant wood frog. Al-Attar R; Storey KB Cell Biochem Funct; 2018 Dec; 36(8):420-430. PubMed ID: 30411386 [TBL] [Abstract][Full Text] [Related]
39. RAGE against the stress: Mitochondrial suppression in hypometabolic hearts. Al-Attar R; Storey KB Gene; 2020 Nov; 761():145039. PubMed ID: 32777527 [TBL] [Abstract][Full Text] [Related]
40. Micromanaging freeze tolerance: the biogenesis and regulation of neuroprotective microRNAs in frozen brains. Hadj-Moussa H; Storey KB Cell Mol Life Sci; 2018 Oct; 75(19):3635-3647. PubMed ID: 29681008 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]