These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36703537)

  • 1. All Cubic-Phase δ-TAGS Thermoelectrics Over the Entire Mid-Temperature Range.
    Ma B; Ren H; Zhang F; Peng Z; He H; Cui M; Ge Z; Li B; Wu W; Liang P; Xiao Y; Chao X; Yang Z; Wu D
    Small; 2023 Apr; 19(17):e2206439. PubMed ID: 36703537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe)
    Samanta M; Roychowdhury S; Ghatak J; Perumal S; Biswas K
    Chemistry; 2017 Jun; 23(31):7438-7443. PubMed ID: 28436062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase Transitions of Thermoelectric TAGS-85.
    Kumar A; Vermeulen PA; Kooi BJ; Rao J; van Eijck L; Schwarzmüller S; Oeckler O; Blake GR
    Inorg Chem; 2017 Dec; 56(24):15091-15100. PubMed ID: 29185723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realization of Both n- and p-Type GeTe Thermoelectrics: Electronic Structure Modulation by AgBiSe
    Samanta M; Ghosh T; Arora R; Waghmare UV; Biswas K
    J Am Chem Soc; 2019 Dec; 141(49):19505-19512. PubMed ID: 31735034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superior performance and high service stability for GeTe-based thermoelectric compounds.
    Xing T; Song Q; Qiu P; Zhang Q; Xia X; Liao J; Liu R; Huang H; Yang J; Bai S; Ren D; Shi X; Chen L
    Natl Sci Rev; 2019 Oct; 6(5):944-954. PubMed ID: 34691955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping.
    Liu Z; Sun J; Mao J; Zhu H; Ren W; Zhou J; Wang Z; Singh DJ; Sui J; Chu CW; Ren Z
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5332-5337. PubMed ID: 29735697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Thermoelectric Performance of Non-Stoichiometric and Oriented GeTe Thin Films.
    Zhang X; Lu X; Jiang P; Bao X
    Small; 2023 Dec; 19(49):e2303710. PubMed ID: 37612819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient (In₂Te₃)x(GeTe)(3-3x) thermoelectric materials: a substitute for TAGS.
    Sun H; Lu X; Chi H; Morelli DT; Uher C
    Phys Chem Chem Phys; 2014 Aug; 16(29):15570-5. PubMed ID: 24953478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cubic room temperature polymorph of thermoelectric TAGS-85.
    Kumar A; Vermeulen PA; Kooi BJ; Rao J; Schwarzmüller S; Oeckler O; Blake GR
    RSC Adv; 2018 Dec; 8(74):42322-42328. PubMed ID: 35558402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe.
    Nshimyimana E; Su X; Xie H; Liu W; Deng R; Luo T; Yan Y; Tang X
    Sci Bull (Beijing); 2018 Jun; 63(11):717-725. PubMed ID: 36658821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance GeTe Thermoelectrics in Both Rhombohedral and Cubic Phases.
    Li J; Zhang X; Wang X; Bu Z; Zheng L; Zhou B; Xiong F; Chen Y; Pei Y
    J Am Chem Soc; 2018 Nov; 140(47):16190-16197. PubMed ID: 30360620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe.
    Liu H; Zhang X; Li J; Bu Z; Meng X; Ang R; Li W
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30756-30762. PubMed ID: 31386339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu
    Zhang Q; Ti Z; Zhu Y; Zhang Y; Cao Y; Li S; Wang M; Li D; Zou B; Hou Y; Wang P; Tang G
    ACS Nano; 2021 Dec; 15(12):19345-19356. PubMed ID: 34734696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realizing zT of 2.3 in Ge
    Hong M; Chen ZG; Yang L; Zou YC; Dargusch MS; Wang H; Zou J
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29349887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medium Entropy-Enabled High Performance Cubic GeTe Thermoelectrics.
    Zhi S; Li J; Hu L; Li J; Li N; Wu H; Liu F; Zhang C; Ao W; Xie H; Zhao X; Pennycook SJ; Zhu T
    Adv Sci (Weinh); 2021 Jun; 8(12):2100220. PubMed ID: 34194947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Near-Room-Temperature GeTe Thermoelectrics through In/Pb Co-doping.
    Li J; Hu Q; He S; Tan X; Deng Q; Zhong Y; Zhang F; Ang R
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37273-37279. PubMed ID: 34319070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The solid solution series (GeTe)x(LiSbTe2)2 (1 ≤ x ≤ 11) and the thermoelectric properties of (GeTe)11(LiSbTe2)2.
    Schröder T; Schwarzmüller S; Stiewe C; de Boor J; Hölzel M; Oeckler O
    Inorg Chem; 2013 Oct; 52(19):11288-94. PubMed ID: 24093486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilizing the Optimal Carrier Concentration in Al/Sb-Codoped GeTe for High Thermoelectric Performance.
    Wang X; Xue W; Zhang Z; Li X; Yin L; Chen C; Yu B; Sui J; Cao F; Liu X; Mao J; Wang Y; Lin X; Zhang Q
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45717-45725. PubMed ID: 34541842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Thermal Conductivity and High Thermoelectric Performance in (GeTe)
    Samanta M; Biswas K
    J Am Chem Soc; 2017 Jul; 139(27):9382-9391. PubMed ID: 28625055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced Thermal Conductivity in Nanostructured AgSbTe
    Gainza J; Serrano-Sánchez F; Dura OJ; Nemes NM; Martínez JL; Fernández-Díaz MT; Alonso JA
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.