These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36703559)
1. Generalization of Young-Laplace, Kelvin, and Gibbs-Thomson equations for arbitrarily curved surfaces. Svintradze DV Biophys J; 2023 Mar; 122(5):892-904. PubMed ID: 36703559 [TBL] [Abstract][Full Text] [Related]
2. The Gibbs equation versus the Kelvin and the Gibbs-Thomson equations to describe nucleation and equilibrium of nano-materials. Kaptay G J Nanosci Nanotechnol; 2012 Mar; 12(3):2625-33. PubMed ID: 22755100 [TBL] [Abstract][Full Text] [Related]
3. The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science. Kaptay G Adv Colloid Interface Sci; 2018 Jun; 256():163-192. PubMed ID: 29705027 [TBL] [Abstract][Full Text] [Related]
4. Heterogeneous nucleation in multi-component vapor on a partially wettable charged conducting particle. II. The generalized Laplace, Gibbs-Kelvin, and Young equations and application to nucleation. Noppel M; Vehkamäki H; Winkler PM; Kulmala M; Wagner PE J Chem Phys; 2013 Oct; 139(13):134108. PubMed ID: 24116553 [TBL] [Abstract][Full Text] [Related]
6. Melting Point of a Confined Fluid within Nanopores: The Composition Effect on the Gibbs-Thomson Equation. Jin D; Zhong J J Phys Chem B; 2023 Jun; 127(23):5295-5307. PubMed ID: 37272600 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic Investigation of the Effect of Interface Curvature on the Solid-Liquid Equilibrium and Eutectic Point of Binary Mixtures. Liu F; Zargarzadeh L; Chung HJ; Elliott JAW J Phys Chem B; 2017 Oct; 121(40):9452-9462. PubMed ID: 28961002 [TBL] [Abstract][Full Text] [Related]
12. Shape-anisotropic particles at curved fluid interfaces and role of Laplace pressure: a computational study. Cheng TL; Wang YU J Colloid Interface Sci; 2013 Jul; 402():267-78. PubMed ID: 23628204 [TBL] [Abstract][Full Text] [Related]
13. On the size and shape dependence of the solubility of nano-particles in solutions. Kaptay G Int J Pharm; 2012 Jul; 430(1-2):253-7. PubMed ID: 22486956 [TBL] [Abstract][Full Text] [Related]
14. Generalization of the Gibbs-Kelvin-Kohler and Ostwald-Freundlich equations for a liquid film on a soluble nanoparticle. Shchekin AK; Rusanov AI J Chem Phys; 2008 Oct; 129(15):154116. PubMed ID: 19045185 [TBL] [Abstract][Full Text] [Related]
15. A partial equilibrium theory for liquids bonded to immobile solids. Searcy AW; Beruto DT; Barberis F J Chem Phys; 2009 May; 130(18):184713. PubMed ID: 19449949 [TBL] [Abstract][Full Text] [Related]
16. Detailed Analysis of the Ice Surface after Binding of an Insect Antifreeze Protein and Correlation with the Gibbs-Thomson Equation. Gerhäuser J; Gaukel V Langmuir; 2021 Oct; 37(40):11716-11725. PubMed ID: 34585573 [TBL] [Abstract][Full Text] [Related]
17. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures. Johnston JC; Molinero V J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637 [TBL] [Abstract][Full Text] [Related]
18. On the Gibbs-Thomson equation for the crystallization of confined fluids. Scalfi L; Coasne B; Rotenberg B J Chem Phys; 2021 Mar; 154(11):114711. PubMed ID: 33752374 [TBL] [Abstract][Full Text] [Related]
19. The Young-Laplace equation for a solid-liquid interface. Montero de Hijes P; Shi K; Noya EG; Santiso EE; Gubbins KE; Sanz E; Vega C J Chem Phys; 2020 Nov; 153(19):191102. PubMed ID: 33218242 [TBL] [Abstract][Full Text] [Related]
20. Equilibrium of multi-phase systems in gravitational fields. Voitcu O; Elliott JA J Phys Chem B; 2008 Sep; 112(38):11981-9. PubMed ID: 18729502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]