These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36704046)

  • 1. Detecting, extracting, and mapping of inland surface water using Landsat 8 Operational Land Imager: A case study of Pune district, India.
    Kulkarni R; Khare K; Khanum H
    F1000Res; 2022; 11():774. PubMed ID: 36704046
    [No Abstract]   [Full Text] [Related]  

  • 2. Improving on mapping long-term surface water with a novel framework based on the Landsat imagery series.
    Lan L; Wang YG; Chen HS; Gao XR; Wang XK; Yan XF
    J Environ Manage; 2024 Feb; 353():120202. PubMed ID: 38308984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-comparison of remote sensing-based shoreline mapping techniques at different coastal stretches of India.
    Sunder S; Ramsankaran R; Ramakrishnan B
    Environ Monit Assess; 2017 Jun; 189(6):290. PubMed ID: 28536914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of thresholding methods for shoreline extraction from Sentinel-2 and Landsat-8 imagery: Extreme Lake Salda, track of Mars on Earth.
    Karaman M
    J Environ Manage; 2021 Nov; 298():113481. PubMed ID: 34392093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring spatio-temporal dynamics of urban and peri-urban land transitions using ensemble of remote sensing spectral indices-a case study of Chennai Metropolitan Area, India.
    M M; M K
    Environ Monit Assess; 2019 Dec; 192(1):15. PubMed ID: 31811511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Land cover mapping using Sentinel-1 SAR and Landsat 8 imageries of Lagos State for 2017.
    Makinde EO; Oyelade EO
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):66-74. PubMed ID: 31201700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Land use/land cover changes of Noyyal watershed in Coimbatore district, India, mapped using remote sensing techniques.
    Kinattinkara S; Arumugam T; Kuppusamy S; Krishnan M
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86349-86361. PubMed ID: 35119640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of wetland turbidity using multi-temporal Landsat-8 and Landsat-9 satellite imagery in the Bisalpur wetland, Rajasthan, India.
    Singh R; Saritha V; Pande CB
    Environ Res; 2024 Jan; 241():117638. PubMed ID: 37972812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand.
    Nguyen UNT; Pham LTH; Dang TD
    Environ Monit Assess; 2019 Mar; 191(4):235. PubMed ID: 30900016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Object-based land-use/land-cover change detection using Landsat imagery: a case study of Ardabil, Namin, and Nir counties in northwest Iran.
    Aslami F; Ghorbani A
    Environ Monit Assess; 2018 Jun; 190(7):376. PubMed ID: 29862420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Surface Water Extent of Lake Chad from Multispectral Sensors and GRACE.
    Buma WG; Lee SI; Seo JY
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29958481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey.
    Duru U
    Environ Monit Assess; 2017 Aug; 189(8):385. PubMed ID: 28688069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal.
    Acharya TD; Subedi A; Lee DH
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30087264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting urban impervious surfaces from Sentinel-2 and Landsat-8 satellite data for urban planning and environmental management.
    Deliry SI; Avdan ZY; Avdan U
    Environ Sci Pollut Res Int; 2021 Feb; 28(6):6572-6586. PubMed ID: 33001394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf water potential of coffee estimated by landsat-8 images.
    Maciel DA; Silva VA; Alves HMR; Volpato MML; Barbosa JPRA; Souza VCO; Santos MO; Silveira HRO; Dantas MF; Freitas AF; Carvalho GR; Oliveira Dos Santos J
    PLoS One; 2020; 15(3):e0230013. PubMed ID: 32187201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree.
    Acharya TD; Lee DH; Yang IT; Lee JK
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27420067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and mapping of water and chlorophyll-a spread using Sentinel-2 satellite imagery for water quality assessment of inland water bodies.
    Latwal A; Rehana S; Rajan KS
    Environ Monit Assess; 2023 Oct; 195(11):1304. PubMed ID: 37828127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images.
    He Y; Lu Z; Wang W; Zhang D; Zhang Y; Qin B; Shi K; Yang X
    Water Res; 2022 May; 215():118241. PubMed ID: 35259557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of 6SV to remove skylight reflected at the air-water interface: Application to atmospheric correction of Landsat 8 OLI imagery in inland waters.
    Lu Z; Li J; Shen Q; Zhang B; Zhang H; Zhang F; Wang S
    PLoS One; 2018; 13(8):e0202883. PubMed ID: 30142203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake.
    Zheng Z; Ren J; Li Y; Huang C; Liu G; Du C; Lyu H
    Sci Total Environ; 2016 Dec; 573():39-54. PubMed ID: 27552729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.