These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 36704161)
21. Design of inductive electrostatic boom spray system based on embedded closed electrode structure and droplet distribution test in soybean field. Liu C; Hu J; Cao R; Li Y; Zhao S; Li Q; Zhang W Front Plant Sci; 2024; 15():1367781. PubMed ID: 38952844 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of droplet deposition parameters based on the Genetic-Otsu algorithm. Meng Y; Liu X; Chen W; Du X; Zhang Y; Sun R; Han Y PeerJ; 2024; 12():e18036. PubMed ID: 39308812 [TBL] [Abstract][Full Text] [Related]
23. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards. Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733 [TBL] [Abstract][Full Text] [Related]
24. Boom sprayer optimizations for bed-grown carrots at different growth stages based on spray distribution and droplet characteristics. Zwertvaegher I; Lamare A; Douzals JP; Balsari P; Marucco P; Grella M; Caffini A; Mylonas N; Dekeyser D; Foqué D; Nuyttens D Pest Manag Sci; 2022 Apr; 78(4):1729-1739. PubMed ID: 34995010 [TBL] [Abstract][Full Text] [Related]
25. Comparison of UAV and fixed-wing aerial application for alfalfa insect pest control: evaluating efficacy, residues, and spray quality. Li X; Giles DK; Andaloro JT; Long R; Lang EB; Watson LJ; Qandah I Pest Manag Sci; 2021 Nov; 77(11):4980-4992. PubMed ID: 34216079 [TBL] [Abstract][Full Text] [Related]
26. Low-Cost Plant-Protection Unmanned Ground Vehicle System for Variable Weeding Using Machine Vision. Dong H; Shen J; Yu Z; Lu X; Liu F; Kong W Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400446 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Li X; Giles DK; Niederholzer FJ; Andaloro JT; Lang EB; Watson LJ Pest Manag Sci; 2021 Jan; 77(1):527-537. PubMed ID: 32816397 [TBL] [Abstract][Full Text] [Related]
28. Evaluating the use of unmanned aerial vehicles for spray applications in mountain Nanguo pear orchards. Guo S; Chen C; Du G; Yu F; Yao W; Lan Y Pest Manag Sci; 2024 Jul; 80(7):3590-3602. PubMed ID: 38451056 [TBL] [Abstract][Full Text] [Related]
29. Study on droplet deposition characteristics and application of small and medium crown garden plants sprayed by UAV sprayer. Gao J; Bo P; Lan Y; Sun L; Liu H; Li X; Wang G; Wang H Front Plant Sci; 2024; 15():1343793. PubMed ID: 38828225 [TBL] [Abstract][Full Text] [Related]
30. Patch spraying: future role of electronics in limiting pesticide use. Miller PC Pest Manag Sci; 2003 May; 59(5):566-74. PubMed ID: 12741525 [TBL] [Abstract][Full Text] [Related]
31. Spray performance assessment of a remote-controlled vehicle prototype for pesticide application in greenhouse tomato crops. Rincón VJ; Grella M; Marucco P; Alcatrão LE; Sanchez-Hermosilla J; Balsari P Sci Total Environ; 2020 Jul; 726():138509. PubMed ID: 32305758 [TBL] [Abstract][Full Text] [Related]
32. Development of a Moving Baseline RTK/Motion Sensor-Integrated Positioning-Based Autonomous Driving Algorithm for a Speed Sprayer. Han JH; Park CH; Jang YY Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560246 [TBL] [Abstract][Full Text] [Related]
33. Effect of spray application techniques on spray deposits and residues of bifenthrin in peas under field conditions. Hanafi A; Hindy M; Abdel Ghani S J Pestic Sci; 2016 May; 41(2):49-54. PubMed ID: 30363108 [TBL] [Abstract][Full Text] [Related]
34. Study on Droplet Impact and Spreading and Deposition Behavior of Harvest Aids on Cotton Leaves. Duan L; Fang Z; Han X; Dou Z; Liu Y; Wen M; Hou T; Yang D; Wang C; Zhang G Langmuir; 2022 Oct; 38(40):12248-12262. PubMed ID: 36170011 [TBL] [Abstract][Full Text] [Related]
35. Programmable ultrasonic sensing system for targeted spraying in orchards. Stajnko D; Berk P; Lešnik M; Jejčič V; Lakota M; Strancar A; Hočevar M; Rakun J Sensors (Basel); 2012 Nov; 12(11):15500-19. PubMed ID: 23202220 [TBL] [Abstract][Full Text] [Related]
36. Field assessment of a newly-designed pneumatic spout to contain spray drift in vineyards: evaluation of canopy distribution and off-target losses. Grella M; Miranda-Fuentes A; Marucco P; Balsari P Pest Manag Sci; 2020 Dec; 76(12):4173-4191. PubMed ID: 32592438 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of the Intelligent Sprayer System in Peach Production. Boatwright H; Zhu H; Clark A; Schnabel G Plant Dis; 2020 Dec; 104(12):3207-3212. PubMed ID: 33026954 [TBL] [Abstract][Full Text] [Related]
38. Design, development and evaluation of a tractor mounted air blast sprayer for coconut and arecanut. Pandiselvam R; Mathew AC; Imran S; Pandian RTP; Manikantan MR Sci Prog; 2023; 106(3):368504231199927. PubMed ID: 37682536 [TBL] [Abstract][Full Text] [Related]
39. Precision agricultural robotic sprayer with real-time Tobacco recognition and spraying system based on deep learning. Nasir FE; Tufail M; Haris M; Iqbal J; Khan S; Khan MT PLoS One; 2023; 18(3):e0283801. PubMed ID: 37000803 [TBL] [Abstract][Full Text] [Related]
40. Multifactorial analysis and experiments affecting the effect of fog droplet penetration in fruit tree canopies. Sun D; Huang X; Hu J; Jiang H; Song S; Xue X Front Plant Sci; 2024; 15():1351525. PubMed ID: 39175485 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]