These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36704306)

  • 1. Engineering and adaptive laboratory evolution of
    Sun Q; Liu D; Chen Z
    Front Bioeng Biotechnol; 2022; 10():1089639. PubMed ID: 36704306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation.
    Rohlhill J; Gerald Har JR; Antoniewicz MR; Papoutsakis ET
    Metab Eng; 2020 Jan; 57():247-255. PubMed ID: 31881281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Yeast
    Wang G; Olofsson-Dolk M; Hansson FG; Donati S; Li X; Chang H; Cheng J; Dahlin J; Borodina I
    ACS Synth Biol; 2021 Dec; 10(12):3537-3550. PubMed ID: 34797975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph.
    Bennett RK; Gonzalez JE; Whitaker WB; Antoniewicz MR; Papoutsakis ET
    Metab Eng; 2018 Jan; 45():75-85. PubMed ID: 29203223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive laboratory evolution of methylotrophic Escherichia coli enables synthesis of all amino acids from methanol-derived carbon.
    Har JRG; Agee A; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Appl Microbiol Biotechnol; 2021 Jan; 105(2):869-876. PubMed ID: 33404828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixing and matching methylotrophic enzymes to design a novel methanol utilization pathway in E. coli.
    De Simone A; Vicente CM; Peiro C; Gales L; Bellvert F; Enjalbert B; Heux S
    Metab Eng; 2020 Sep; 61():315-325. PubMed ID: 32687991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.
    Whitaker WB; Jones JA; Bennett RK; Gonzalez JE; Vernacchio VR; Collins SM; Palmer MA; Schmidt S; Antoniewicz MR; Koffas MA; Papoutsakis ET
    Metab Eng; 2017 Jan; 39():49-59. PubMed ID: 27815193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Escherichia coli for methanol-dependent growth on glucose for metabolite production.
    Bennett RK; Dillon M; Gerald Har JR; Agee A; von Hagel B; Rohlhill J; Antoniewicz MR; Papoutsakis ET
    Metab Eng; 2020 Jul; 60():45-55. PubMed ID: 32179162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle.
    Keller P; Reiter MA; Kiefer P; Gassler T; Hemmerle L; Christen P; Noor E; Vorholt JA
    Nat Commun; 2022 Sep; 13(1):5243. PubMed ID: 36068201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Methanol Tolerance of an
    Bennett RK; Gregory GJ; Gonzalez JE; Har JRG; Antoniewicz MR; Papoutsakis ET
    Front Microbiol; 2021; 12():638426. PubMed ID: 33643274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Methanol-Based Biomanufacturing: Emerging Strategies for Engineering Synthetic Methylotrophy in
    Kelso PA; Chow LKM; Carpenter AC; Paulsen IT; Williams TC
    ACS Synth Biol; 2022 Aug; 11(8):2548-2563. PubMed ID: 35848307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic methylotrophy: Strategies to assimilate methanol for growth and chemicals production.
    Antoniewicz MR
    Curr Opin Biotechnol; 2019 Oct; 59():165-174. PubMed ID: 31437746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methanol-Essential Growth of
    Hennig G; Haupka C; Brito LF; Rückert C; Cahoreau E; Heux S; Wendisch VF
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32443885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli.
    Woolston BM; King JR; Reiter M; Van Hove B; Stephanopoulos G
    Nat Commun; 2018 Jun; 9(1):2387. PubMed ID: 29921903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Escherichia coli for methanol conversion.
    Müller JEN; Meyer F; Litsanov B; Kiefer P; Potthoff E; Heux S; Quax WJ; Wendisch VF; Brautaset T; Portais JC; Vorholt JA
    Metab Eng; 2015 Mar; 28():190-201. PubMed ID: 25596507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribulose Monophosphate Shunt Provides Nearly All Biomass and Energy Required for Growth of E. coli.
    He H; Edlich-Muth C; Lindner SN; Bar-Even A
    ACS Synth Biol; 2018 Jun; 7(6):1601-1611. PubMed ID: 29756766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering
    Wang J; Chen Z; Deng X; Yuan Q; Ma H
    Bioengineering (Basel); 2023 Mar; 10(4):. PubMed ID: 37106602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methanol-essential growth of Escherichia coli.
    Meyer F; Keller P; Hartl J; Gröninger OG; Kiefer P; Vorholt JA
    Nat Commun; 2018 Apr; 9(1):1508. PubMed ID: 29666370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing Synthetic Methylotrophs by Metabolic Engineering-Guided Adaptive Laboratory Evolution.
    Wang Y; Zheng P; Sun J
    Adv Biochem Eng Biotechnol; 2022; 180():127-148. PubMed ID: 35220456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rewiring the native methanol assimilation metabolism by incorporating the heterologous ribulose monophosphate cycle into Methylorubrum extorquens.
    Yuan XJ; Chen WJ; Ma ZX; Yuan QQ; Zhang M; He L; Mo XH; Zhang C; Zhang CT; Wang MY; Xing XH; Yang S
    Metab Eng; 2021 Mar; 64():95-110. PubMed ID: 33493644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.