These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36704548)
1. Fungal pathogens causing postharvest fruit rot of wolfberry and inhibitory effect of 2,3-butanedione. Ling L; Luo H; Zhao Y; Yang C; Cheng W; Pang M Front Microbiol; 2022; 13():1068144. PubMed ID: 36704548 [TBL] [Abstract][Full Text] [Related]
2. The inhibitory effect of volatile organic compounds produced by Bacillus subtilis CL2 on pathogenic fungi of wolfberry. Ling L; Zhao Y; Tu Y; Yang C; Ma W; Feng S; Lu L; Zhang J J Basic Microbiol; 2021 Feb; 61(2):110-121. PubMed ID: 33368461 [TBL] [Abstract][Full Text] [Related]
3. Volatile organic compounds produced by Ling L; Luo H; Yang C; Wang Y; Cheng W; Pang M; Jiang K Front Microbiol; 2022; 13():987844. PubMed ID: 36090114 [TBL] [Abstract][Full Text] [Related]
4. Antifungal Activity of Volatile Components from Ceratocystis fimbriata and Its Potential Biocontrol Mechanism on Alternaria alternata in Postharvest Cherry Tomato Fruit. Xing S; Gao Y; Li X; Ren H; Gao Y; Yang H; Liu Y; He S; Huang Q Microbiol Spectr; 2023 Feb; 11(1):e0271322. PubMed ID: 36625661 [TBL] [Abstract][Full Text] [Related]
5. Ethyl p-coumarate exerts antifungal activity in vitro and in vivo against fruit Alternaria alternata via membrane-targeted mechanism. Li W; Yuan S; Sun J; Li Q; Jiang W; Cao J Int J Food Microbiol; 2018 Aug; 278():26-35. PubMed ID: 29702314 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Yang J; Chen YZ; Yu-Xuan W; Tao L; Zhang YD; Wang SR; Zhang GC; Zhang J Pestic Biochem Physiol; 2021 Jun; 175():104859. PubMed ID: 33993955 [TBL] [Abstract][Full Text] [Related]
7. Biological control of toxigenic citrus and papaya-rotting fungi by Streptomyces violascens MT7 and its extracellular metabolites. Choudhary B; Nagpure A; Gupta RK J Basic Microbiol; 2015 Dec; 55(12):1343-56. PubMed ID: 26214840 [TBL] [Abstract][Full Text] [Related]
8. Prevalence and spatial distribution of cranberry fruit rot pathogens in British Columbia, Canada and potential fungicides for fruit rot management. Wood B; McBride E; Nabetani K; Griffin T; Sabaratnam S Front Plant Sci; 2023; 14():1274094. PubMed ID: 38023868 [TBL] [Abstract][Full Text] [Related]
9. Synergistic effect of natural antifungal agents for postharvest diseases of blackberry fruits. Liu H; Zhao H; Lyu L; Huang Z; Fan S; Wu W; Li W J Sci Food Agric; 2019 May; 99(7):3343-3349. PubMed ID: 30578531 [TBL] [Abstract][Full Text] [Related]
10. Chemical Composition Profiling and Antifungal Activity of Saffron Petal Extract. Naim N; Fauconnier ML; Ennahli N; Tahiri A; Baala M; Madani I; Ennahli S; Lahlali R Molecules; 2022 Dec; 27(24):. PubMed ID: 36557875 [TBL] [Abstract][Full Text] [Related]
11. Inhibitory effect of gamma irradiation and its application for control of postharvest green mold decay of Satsuma mandarins. Jeong RD; Chu EH; Lee GW; Cho C; Park HJ Int J Food Microbiol; 2016 Oct; 234():1-8. PubMed ID: 27356109 [TBL] [Abstract][Full Text] [Related]
12. The antifungal activity and mechanism of silver nanoparticles against four pathogens causing kiwifruit post-harvest rot. Li L; Pan H; Deng L; Qian G; Wang Z; Li W; Zhong C Front Microbiol; 2022; 13():988633. PubMed ID: 36118196 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits. de Souza EL; Sales CV; de Oliveira CE; Lopes LA; da Conceição ML; Berger LR; Stamford TC Front Microbiol; 2015; 6():732. PubMed ID: 26257717 [TBL] [Abstract][Full Text] [Related]
14. Efficacy and Mechanism of Thymol/KGM/LG Edible Coating Solution on Inhibition of Zhang Q; Qin W; Hu X; Yan J; Liu Y; Wang Z; Liu L; Ding J; Huang P; Wu J Front Microbiol; 2022; 13():880376. PubMed ID: 35651497 [TBL] [Abstract][Full Text] [Related]
15. Antifungal effect of volatile organic compounds produced by Streptomyces salmonis PSRDC-09 against anthracnose pathogen Colletotrichum gloeosporioides PSU-03 in postharvest chili fruit. Boukaew S; Cheirsilp B; Prasertsan P; Yossan S J Appl Microbiol; 2021 Sep; 131(3):1452-1463. PubMed ID: 33570812 [TBL] [Abstract][Full Text] [Related]
16. An Endophytic Strain of Uwaremwe C; Yue L; Wang Y; Tian Y; Zhao X; Liu Y; Zhou Q; Zhang Y; Wang R Front Microbiol; 2021; 12():782523. PubMed ID: 35069484 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the Fermentation Conditions of He J; Zhang X; Wang Q; Li N; Ding D; Wang B Microorganisms; 2023 Sep; 11(10):. PubMed ID: 37894038 [No Abstract] [Full Text] [Related]
18. Control of Sphaeropsis Rot in Stored Apple Fruit Caused by Sphaeropsis pyriputrescens with Postharvest Fungicides. Xiao CL; Kim YK; Boal RJ Plant Dis; 2011 Sep; 95(9):1075-1079. PubMed ID: 30732057 [TBL] [Abstract][Full Text] [Related]
19. Effects of Ozone Fumigation on the Main Postharvest Pathogenic Fungi Wu W; Cao S; Chen H; Ruan L; Lei Q; Xu S; Li J Front Plant Sci; 2022; 13():898994. PubMed ID: 35712556 [TBL] [Abstract][Full Text] [Related]
20. Impact of vanillin on postharvest disease control of apple. Wang X; Zhang X; Sun M; Wang L; Zou Y; Fu L; Han C; Li A; Li L; Zhu C Front Microbiol; 2022; 13():979737. PubMed ID: 36090122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]