BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 36704719)

  • 1. Research on reinforcement learning-based safe decision-making methodology for multiple unmanned aerial vehicles.
    Yue L; Yang R; Zhang Y; Zuo J
    Front Neurorobot; 2022; 16():1105480. PubMed ID: 36704719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Reinforcement Learning for Computation Offloading and Resource Allocation in Unmanned-Aerial-Vehicle Assisted Edge Computing.
    Li S; Hu X; Du Y
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments.
    Kong X; Zhou Y; Li Z; Wang S
    Front Neurorobot; 2023; 17():1302898. PubMed ID: 38318422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time route planning of unmanned aerial vehicles based on improved soft actor-critic algorithm.
    Zhou Y; Shu J; Zheng X; Hao H; Song H
    Front Neurorobot; 2022; 16():1025817. PubMed ID: 36545396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking.
    Zhao J; Liu H; Sun J; Wu K; Cai Z; Ma Y; Wang Y
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proactive Handover Decision for UAVs with Deep Reinforcement Learning.
    Jang Y; Raza SM; Kim M; Choo H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-Efficient UAV Movement Control for Fair Communication Coverage: A Deep Reinforcement Learning Approach.
    Nemer IA; Sheltami TR; Belhaiza S; Mahmoud AS
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power Allocation and Energy Cooperation for UAV-Enabled MmWave Networks: A Multi-Agent Deep Reinforcement Learning Approach.
    Domingo MC
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task Offloading Strategy for Unmanned Aerial Vehicle Power Inspection Based on Deep Reinforcement Learning.
    Zhuang W; Xing F; Lu Y
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Searching and Tracking an Unknown Number of Targets: A Learning-Based Method Enhanced with Maps Merging.
    Yan P; Jia T; Bai C
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-UAV Path Planning in GPS and Communication Denial Environment.
    Xu Y; Wei Y; Wang D; Jiang K; Deng H
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MW-MADDPG: a meta-learning based decision-making method for collaborative UAV swarm.
    Zhao M; Wang G; Fu Q; Guo X; Chen Y; Li T; Liu X
    Front Neurorobot; 2023; 17():1243174. PubMed ID: 37811355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Objective Optimization in Air-to-Air Communication System Based on Multi-Agent Deep Reinforcement Learning.
    Lin S; Chen Y; Li S
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bio-Inspired Decision-Making Method of UAV Swarm for Attack-Defense Confrontation via Multi-Agent Reinforcement Learning.
    Chi P; Wei J; Wu K; Di B; Wang Y
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. White shark optimizer with optimal deep learning based effective unmanned aerial vehicles communication and scene classification.
    Nadana Ravishankar T; Ramprasath M; Daniel A; Selvarajan S; Subbiah P; Balusamy B
    Sci Rep; 2023 Dec; 13(1):23041. PubMed ID: 38155207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning-Based Multi-UAV Flocking Control With Limited Visual Field and Instinctive Repulsion.
    Bai C; Yan P; Piao H; Pan W; Guo J
    IEEE Trans Cybern; 2024 Jan; 54(1):462-475. PubMed ID: 37028361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Reinforcement Learning Approach with Multiple Experience Pools for UAV's Autonomous Motion Planning in Complex Unknown Environments.
    Hu Z; Wan K; Gao X; Zhai Y; Wang Q
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-UAV Redeployment Optimization Based on Multi-Agent Deep Reinforcement Learning Oriented to Swarm Performance Restoration.
    Wu Q; Geng Z; Ren Y; Feng Q; Zhong J
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A UAV Maneuver Decision-Making Algorithm for Autonomous Airdrop Based on Deep Reinforcement Learning.
    Li K; Zhang K; Zhang Z; Liu Z; Hua S; He J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Globally Guided Deep V-Network-Based Motion Planning Algorithm for Fixed-Wing Unmanned Aerial Vehicles.
    Du H; You M; Zhao X
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.