BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 36704719)

  • 21. Reinforcement Learning Based Topology Control for UAV Networks.
    Yoo T; Lee S; Yoo K; Kim H
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Actor-critic learning-based energy optimization for UAV access and backhaul networks.
    Yuan Y; Lei L; Vu TX; Chatzinotas S; Sun S; Ottersten B
    EURASIP J Wirel Commun Netw; 2021; 2021(1):78. PubMed ID: 34777489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. UAV Detection Using Reinforcement Learning.
    AlKhonaini A; Sheltami T; Mahmoud A; Imam M
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Reinforcement Learning for UAV Trajectory Design Considering Mobile Ground Users.
    Lee W; Jeon Y; Kim T; Kim YI
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Space-Air-Ground Integrated Mobile Crowdsensing for Partially Observable Data Collection by Multi-Scale Convolutional Graph Reinforcement Learning.
    Ren Y; Ye Z; Song G; Jiang X
    Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards a Blockchain-Based Multi-UAV Surveillance System.
    Santos De Campos MG; Chanel CPC; Chauffaut C; Lacan J
    Front Robot AI; 2021; 8():557692. PubMed ID: 34212007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research on the Multiagent Joint Proximal Policy Optimization Algorithm Controlling Cooperative Fixed-Wing UAV Obstacle Avoidance.
    Zhao W; Chu H; Miao X; Guo L; Shen H; Zhu C; Zhang F; Liang D
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-UAV autonomous collision avoidance based on PPO-GIC algorithm with CNN-LSTM fusion network.
    Liang C; Liu L; Liu C
    Neural Netw; 2023 May; 162():21-33. PubMed ID: 36878168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Learning on Multi Sensor Data for Counter UAV Applications-A Systematic Review.
    Samaras S; Diamantidou E; Ataloglou D; Sakellariou N; Vafeiadis A; Magoulianitis V; Lalas A; Dimou A; Zarpalas D; Votis K; Daras P; Tzovaras D
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31698862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unmanned Aerial Vehicle Cooperative Data Dissemination Based on Graph Neural Networks.
    Xing N; Zhang Y; Wang Y; Zhou Y
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Comprehensive Review of Micro UAV Charging Techniques.
    Mohsan SAH; Othman NQH; Khan MA; Amjad H; Żywiołek J
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. APPA-3D: an autonomous 3D path planning algorithm for UAVs in unknown complex environments.
    Wang J; Zhao Z; Qu J; Chen X
    Sci Rep; 2024 Jan; 14(1):1231. PubMed ID: 38216719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Optimal Routing Algorithm for Unmanned Aerial Vehicles.
    Kim S; Kwak JH; Oh B; Lee DH; Lee D
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing multi-UAV air combat decision making via hierarchical reinforcement learning.
    Wang H; Wang J
    Sci Rep; 2024 Feb; 14(1):4458. PubMed ID: 38396185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J; Peng X; Wang H; Niu W; Zheng X
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling and optimization of multiple unmanned aerial vehicles system architecture alternatives.
    Qin D; Li Z; Yang F; Wang W; He L
    ScientificWorldJournal; 2014; 2014():189679. PubMed ID: 25140328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Power-Efficient Wireless Coverage Using Minimum Number of UAVs.
    Sawalmeh A; Othman NS; Liu G; Khreishah A; Alenezi A; Alanazi A
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Realizing asynchronous finite-time robust tracking control of switched flight vehicles by using nonfragile deep reinforcement learning.
    Cheng H; Song R; Li H; Wei W; Zheng B; Fang Y
    Front Neurosci; 2023; 17():1329576. PubMed ID: 38188035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-UAV Collaborative Search and Attack Mission Decision-Making in Unknown Environments.
    Liang Z; Li Q; Fu G
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel metaheuristics with adaptive neuro-fuzzy inference system for decision making on autonomous unmanned aerial vehicle systems.
    Ragab M; Ashary EB; Aljedaibi WH; Alzahrani IR; Kumar A; Gupta D; Mansour RF
    ISA Trans; 2023 Jan; 132():16-23. PubMed ID: 35523604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.