BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36705056)

  • 1. Extracellular HSP90 promotes differentiation of lens epithelial cells to fiber cells by activating LRP1-YAP-PROX1 axis.
    Li J; Yu J; Huang W; Sang F; Li J; Ren Y; Huang H; Wang M; Li K; Zhang J; Li H; Cui X; Zhang J; Hu M; Yuan F; Guo W; Zhang F; Mu H; Hu Y
    FASEB J; 2023 Feb; 37(2):e22783. PubMed ID: 36705056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HSP90 as a novel therapeutic target for posterior capsule opacification.
    Li J; Xue W; Wang X; Huang W; Wang XX; Li H; Cui X; Li M; Mu H; Ren Y; Zhang F; Hu Y
    Exp Eye Res; 2019 Dec; 189():107821. PubMed ID: 31589841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of transcription factors and crystallin proteins during rat lens regeneration.
    Huang Y; Xie L
    Mol Vis; 2010 Mar; 16():341-52. PubMed ID: 20216939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency.
    Lachke SA
    Exp Eye Res; 2022 Jan; 214():108889. PubMed ID: 34906599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secreted HSP90α-LRP1 Signaling Promotes Tumor Metastasis and Chemoresistance in Pancreatic Cancer.
    Xue N; Du T; Lai F; Jin J; Ji M; Chen X
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for Hippo/YAP-signaling in FGF-induced lens epithelial cell proliferation and fibre differentiation.
    Dawes LJ; Shelley EJ; McAvoy JW; Lovicu FJ
    Exp Eye Res; 2018 Apr; 169():122-133. PubMed ID: 29355736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development.
    Aryal S; Viet J; Weatherbee BAT; Siddam AD; Hernandez FG; Gautier-Courteille C; Paillard L; Lachke SA
    Hum Genet; 2020 Dec; 139(12):1541-1554. PubMed ID: 32594240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel extracellular Hsp90 mediated co-receptor function for LRP1 regulates EphA2 dependent glioblastoma cell invasion.
    Gopal U; Bohonowych JE; Lema-Tome C; Liu A; Garrett-Mayer E; Wang B; Isaacs JS
    PLoS One; 2011 Mar; 6(3):e17649. PubMed ID: 21408136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential protein expression in lens epithelial whole-mounts and lens epithelial cell cultures.
    Ong MD; Payne DM; Garner MH
    Exp Eye Res; 2003 Jul; 77(1):35-49. PubMed ID: 12823986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract.
    Lovicu FJ; Shin EH; McAvoy JW
    Exp Eye Res; 2016 Jan; 142():92-101. PubMed ID: 26003864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Participation of the lipoprotein receptor LRP1 in hypoxia-HSP90alpha autocrine signaling to promote keratinocyte migration.
    Woodley DT; Fan J; Cheng CF; Li Y; Chen M; Bu G; Li W
    J Cell Sci; 2009 May; 122(Pt 10):1495-8. PubMed ID: 19383717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular Hsp90α and clusterin synergistically promote breast cancer epithelial-to-mesenchymal transition and metastasis via LRP1.
    Tian Y; Wang C; Chen S; Liu J; Fu Y; Luo Y
    J Cell Sci; 2019 Jul; 132(15):. PubMed ID: 31273033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Zeb proteins δEF1 and Sip1 may have distinct functions in lens cells following cataract surgery.
    Manthey AL; Terrell AM; Wang Y; Taube JR; Yallowitz AR; Duncan MK
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):5445-55. PubMed ID: 25082886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression.
    Audette DS; Anand D; So T; Rubenstein TB; Lachke SA; Lovicu FJ; Duncan MK
    Development; 2016 Jan; 143(2):318-28. PubMed ID: 26657765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Lens fiber differentiation in rats posterior capsule opacification].
    Huang YS; Xie LX
    Zhonghua Yan Ke Za Zhi; 2007 Mar; 43(3):260-5. PubMed ID: 17605911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells.
    Wang X; Garcia CM; Shui YB; Beebe DC
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3608-19. PubMed ID: 15452068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual function of TGFβ in lens epithelial cell fate: implications for secondary cataract.
    Boswell BA; Korol A; West-Mays JA; Musil LS
    Mol Biol Cell; 2017 Apr; 28(7):907-921. PubMed ID: 28209733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth factor signaling in vitreous humor-induced lens fiber differentiation.
    Wang Q; McAvoy JW; Lovicu FJ
    Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3599-610. PubMed ID: 20130274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of the PI3K/Akt signaling pathway in platelet-derived growth factor-induced migration of human lens epithelial cells.
    Xiong W; Cheng BH; Jia SB; Tang LS
    Curr Eye Res; 2010 May; 35(5):389-401. PubMed ID: 20450252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activated Ras alters lens and corneal development through induction of distinct downstream targets.
    Burgess D; Zhang Y; Siefker E; Vaca R; Kuracha MR; Reneker L; Overbeek PA; Govindarajan V
    BMC Dev Biol; 2010 Jan; 10():13. PubMed ID: 20105280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.