These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Ding Y; Kwok CK; Tang Y; Bevilacqua PC; Assmann SM Nat Protoc; 2015 Jul; 10(7):1050-66. PubMed ID: 26086407 [TBL] [Abstract][Full Text] [Related]
23. Methods and advances in RNA characterization and design. Contreras LM Methods; 2018 Jul; 143():1-3. PubMed ID: 30017060 [No Abstract] [Full Text] [Related]
24. A novel method for the identification of conserved structural patterns in RNA: From small scale to high-throughput applications. Pietrosanto M; Mattei E; Helmer-Citterich M; Ferrè F Nucleic Acids Res; 2016 Oct; 44(18):8600-8609. PubMed ID: 27580722 [TBL] [Abstract][Full Text] [Related]
26. Systematic probing of the bacterial RNA structurome to reveal new functions. Ignatova Z; Narberhaus F Curr Opin Microbiol; 2017 Apr; 36():14-19. PubMed ID: 28160611 [TBL] [Abstract][Full Text] [Related]
27. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. Fuchs RT; Sun Z; Zhuang F; Robb GB PLoS One; 2015; 10(5):e0126049. PubMed ID: 25942392 [TBL] [Abstract][Full Text] [Related]
28. DMS-MaPseq for Genome-Wide or Targeted RNA Structure Probing In Vitro and In Vivo. Tomezsko P; Swaminathan H; Rouskin S Methods Mol Biol; 2021; 2254():219-238. PubMed ID: 33326078 [TBL] [Abstract][Full Text] [Related]
29. RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications. Incarnato D; Morandi E; Simon LM; Oliviero S Nucleic Acids Res; 2018 Sep; 46(16):e97. PubMed ID: 29893890 [TBL] [Abstract][Full Text] [Related]
31. Understanding the transcriptome through RNA structure. Wan Y; Kertesz M; Spitale RC; Segal E; Chang HY Nat Rev Genet; 2011 Aug; 12(9):641-55. PubMed ID: 21850044 [TBL] [Abstract][Full Text] [Related]
32. Sequencing-based analysis of RNA structures in living cells with 2A3 via SHAPE-MaP. Incarnato D Methods Enzymol; 2023; 691():153-181. PubMed ID: 37914444 [TBL] [Abstract][Full Text] [Related]
33. Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome. Kawaguchi R; Kiryu H BMC Bioinformatics; 2016 May; 17(1):203. PubMed ID: 27153986 [TBL] [Abstract][Full Text] [Related]
34. High-Throughput Analysis and Engineering of Ribozymes and Deoxyribozymes by Sequencing. Yokobayashi Y Acc Chem Res; 2020 Dec; 53(12):2903-2912. PubMed ID: 33164502 [TBL] [Abstract][Full Text] [Related]
35. PROBer Provides a General Toolkit for Analyzing Sequencing-Based Toeprinting Assays. Li B; Tambe A; Aviran S; Pachter L Cell Syst; 2017 May; 4(5):568-574.e7. PubMed ID: 28501650 [TBL] [Abstract][Full Text] [Related]
36. Motif Discovery from CLIP Experiments. Pietrosanto M; Ausiello G; Helmer-Citterich M Methods Mol Biol; 2021; 2284():43-50. PubMed ID: 33835436 [TBL] [Abstract][Full Text] [Related]
37. Computational identification of protein binding sites on RNAs using high-throughput RNA structure-probing data. Hu X; Wong TK; Lu ZJ; Chan TF; Lau TC; Yiu SM; Yip KY Bioinformatics; 2014 Apr; 30(8):1049-1055. PubMed ID: 24376038 [TBL] [Abstract][Full Text] [Related]
38. SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Loughrey D; Watters KE; Settle AH; Lucks JB Nucleic Acids Res; 2014 Dec; 42(21):e165. PubMed ID: 25303992 [TBL] [Abstract][Full Text] [Related]