These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3670600)

  • 1. Double-label autoradiographic deoxyglucose method for sequential measurement of regional cerebral glucose utilization.
    Redies C; Diksic M; Evans AC; Gjedde A; Yamamoto YL
    Neuroscience; 1987 Aug; 22(2):601-19. PubMed ID: 3670600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sequential double-label autoradiographic method that quantifies altered rates of regional glucose metabolism.
    Olds JL; Frey KA; Ehrenkaufer RL; Agranoff BW
    Brain Res; 1985 Dec; 361(1-2):217-24. PubMed ID: 4084794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long experimental durations are required for double label [14C]- and [3H]2-deoxyglucose autoradiographic methods.
    Ciricillo SF; Jasper MP; Gonzalez MF; Sharp FR
    Brain Res; 1991 Nov; 564(1):171-5. PubMed ID: 1777819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-tracer autoradiographic study of protein synthesis and glucose consumption in rats with focal cerebral ischemia.
    Christensen T; Balchen T; Bruhn T; Diemer NH
    Neurol Res; 1999 Oct; 21(7):687-94. PubMed ID: 10555193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled forebrain increases of local cerebral glucose utilization and blood flow during physiologic stimulation of a somatosensory pathway in the rat: demonstration by double-label autoradiography.
    Ginsberg MD; Dietrich WD; Busto R
    Neurology; 1987 Jan; 37(1):11-9. PubMed ID: 3796826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sequential double-label 14C- and 3H-2-DG technique: validation by double-dissociation of functional states.
    Friedman HR; Bruce CJ; Goldman-Rakic PS
    Exp Brain Res; 1987; 66(3):543-54. PubMed ID: 3609200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sequential double-label 2-deoxyglucose method for measuring regional cerebral metabolism.
    Altenau LL; Agranoff BW
    Brain Res; 1978 Sep; 153(2):375-81. PubMed ID: 687989
    [No Abstract]   [Full Text] [Related]  

  • 8. The deoxyglucose method in the ferret brain. I. Methodological considerations.
    Redies C; Diksic M
    J Cereb Blood Flow Metab; 1989 Feb; 9(1):35-42. PubMed ID: 2910895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triple-tracer autoradiography of cerebral blood flow, glucose utilization, and protein synthesis in rat brain.
    Mies G; Bodsch W; Paschen W; Hossmann KA
    J Cereb Blood Flow Metab; 1986 Feb; 6(1):59-70. PubMed ID: 3944217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of [14C]glucose and [14C]deoxyglucose as tracers of brain glucose use.
    Hawkins RA; Mans AM; Davis DW; DeJoseph MR
    Am J Physiol; 1988 Mar; 254(3 Pt 1):E310-7. PubMed ID: 3348390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo measurement of [18F]fluorodeoxyglucose rate constants in rat brain by external coincidence counting.
    Redies C; Matsuda H; Diksic M; Meyer E; Yamamoto YL
    Neuroscience; 1987 Aug; 22(2):593-9. PubMed ID: 3670599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Quantitative double tracer autoradiographic technique for the simultaneous measurement of local cerebral blood flow and local cerebral glucose utilization using 14C-IAP and 18F-FDG].
    Sako K; Kato A; Kobatake K; Diksic M; Yamamoto L; Yonemasu Y
    No To Shinkei; 1984 Jul; 36(7):649-56. PubMed ID: 6487434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral glucose utilization: comparison of [14C]deoxyglucose and [6-14C]glucose quantitative autoradiography.
    Collins RC; McCandless DW; Wagman IL
    J Neurochem; 1987 Nov; 49(5):1564-70. PubMed ID: 3668540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous determination of local cerebral glucose utilization and blood flow by carbon-14 double-label autoradiography: method of procedure and validation studies in the rat.
    Ginsberg MD; Smith DW; Wachtel MS; Gonzalez-Carvajal M; Busto R
    J Cereb Blood Flow Metab; 1986 Jun; 6(3):273-85. PubMed ID: 3711156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution autoradiography at the regional topographic level with [14C]2-deoxyglucose and [3H]2-deoxyglucose.
    Duncan GE; Stumpf WE; Pilgrim C; Breese GR
    J Neurosci Methods; 1987 Jun; 20(2):105-13. PubMed ID: 3600030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic alterations in rat somatosensory cortex following unilateral vibrissal removal.
    Dietrich WD; Ginsberg MD; Busto R; Smith DW
    J Neurosci; 1985 Apr; 5(4):874-80. PubMed ID: 3981247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the input function on the calculation of the local cerebral metabolic rate for glucose in the deoxyglucose method.
    Kato A; Menon D; Diksic M; Yamamoto YL
    J Cereb Blood Flow Metab; 1984 Mar; 4(1):41-6. PubMed ID: 6693513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-Deoxyglucose incorporation into rat brain glycogen during measurement of local cerebral glucose utilization by the 2-deoxyglucose method.
    Nelson T; Kaufman EE; Sokoloff L
    J Neurochem; 1984 Oct; 43(4):949-56. PubMed ID: 6470715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The deoxyglucose method in the ferret brain. II. Glucose utilization images and normal values.
    Redies C; Diksic M; Yamamoto YL
    J Cereb Blood Flow Metab; 1989 Feb; 9(1):43-52. PubMed ID: 2910896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A double tracer autoradiographic technique for simultaneous measurement of cerebral blood flow and cerebral metabolism in rats.
    Mies G; Niebuhr I; Hossmann KA
    Eur Neurol; 1981; 20(3):188-93. PubMed ID: 7262116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.