BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36706130)

  • 1. Study on nanocellulose isolated from waste chilli stems processing as dietary fiber in biscuits.
    Ma Y; Chai X; Bao H; Huang Y; Dong W
    PLoS One; 2023; 18(1):e0281142. PubMed ID: 36706130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and Characterization of Nanocellulose from Maguey (
    Sumarago EC; Dela Cerna MFM; Leyson AKB; Tan NPB; Magsico KF
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of cotton fiber-based nanocellulose.
    Theivasanthi T; Anne Christma FL; Toyin AJ; Gopinath SCB; Ravichandran R
    Int J Biol Macromol; 2018 Apr; 109():832-836. PubMed ID: 29133091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
    Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH
    Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of Nanocellulose from Polyester-Cotton Textile Waste for Modification of Film Composites.
    Srichola P; Witthayolankowit K; Sukyai P; Sampoompuang C; Lobyam K; Kampakun P; Toomtong R
    Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted.
    Lu Z; Fan L; Zheng H; Lu Q; Liao Y; Huang B
    Bioresour Technol; 2013 Oct; 146():82-88. PubMed ID: 23916980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of cellulose from Ulva lactuca, manufacture of nanocellulose and its application as antimicrobial polymer.
    El-Sheekh MM; Yousuf WE; Kenawy ER; Mohamed TM
    Sci Rep; 2023 Jun; 13(1):10188. PubMed ID: 37349573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication.
    Khan MN; Rehman N; Sharif A; Ahmed E; Farooqi ZH; Din MI
    Int J Biol Macromol; 2020 Jun; 153():72-78. PubMed ID: 32135259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium.
    Satyamurthy P; Vigneshwaran N
    Enzyme Microb Technol; 2013 Jan; 52(1):20-5. PubMed ID: 23199734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced materials from nature: nanocellulose from citrus waste.
    Mariño M; Lopes da Silva L; Durán N; Tasic L
    Molecules; 2015 Apr; 20(4):5908-23. PubMed ID: 25854755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical Properties of Nanocellulose Isolated from Cotton Stalk Waste.
    Li M; He B; Chen Y; Zhao L
    ACS Omega; 2021 Oct; 6(39):25162-25169. PubMed ID: 34632175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically and mechanically isolated nanocellulose and their self-assembled structures.
    Jiang F; Hsieh YL
    Carbohydr Polym; 2013 Jun; 95(1):32-40. PubMed ID: 23618236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green, chemical-free, and high-yielding extraction of nanocellulose from waste cotton fabric enabled by electron beam irradiation.
    Wu Q; Ding C; Wang B; Rong L; Mao Z; Feng X
    Int J Biol Macromol; 2024 May; 267(Pt 2):131461. PubMed ID: 38599424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on Dissolution and Modification of Cotton Fiber in Different Growth Stages.
    Deng X; Ye S; Wan L; Wu J; Sun H; Ni Y; Liu F
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35408020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of Nanocellulose as a Dietary Fiber Isolated from Brewer's Spent Grain.
    Morales-Juárez AA; Terrazas Armendáriz LD; Alcocer-González JM; Chávez-Guerrero L
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method.
    Benini KCCC; Voorwald HJC; Cioffi MOH; Rezende MC; Arantes V
    Carbohydr Polym; 2018 Jul; 192():337-346. PubMed ID: 29691029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization.
    Li J; Wei X; Wang Q; Chen J; Chang G; Kong L; Su J; Liu Y
    Carbohydr Polym; 2012 Nov; 90(4):1609-13. PubMed ID: 22944423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk.
    Guo Y; Zhang Y; Zheng D; Li M; Yue J
    Int J Biol Macromol; 2020 Nov; 163():927-933. PubMed ID: 32640323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process.
    Mohammadkazemi F; Faria M; Cordeiro N
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():393-9. PubMed ID: 27157766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.