BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 36706316)

  • 1. Ligand Gaussian Accelerated Molecular Dynamics 2 (LiGaMD2): Improved Calculations of Ligand Binding Thermodynamics and Kinetics with Closed Protein Pocket.
    Wang J; Miao Y
    J Chem Theory Comput; 2023 Feb; 19(3):733-745. PubMed ID: 36706316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating Molecular Dynamics Simulations for Drug Discovery.
    Koirala K; Joshi K; Adediwura V; Wang J; Do H; Miao Y
    Methods Mol Biol; 2024; 2714():187-202. PubMed ID: 37676600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand Gaussian accelerated Molecular Dynamics 3 (LiGaMD3): Improved Calculations of Binding Thermodynamics and Kinetics of Both Small Molecules and Flexible Peptides.
    Wang J; Miao Y
    bioRxiv; 2024 May; ():. PubMed ID: 38766067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD): Characterization of Ligand Binding Thermodynamics and Kinetics.
    Miao Y; Bhattarai A; Wang J
    J Chem Theory Comput; 2020 Sep; 16(9):5526-5547. PubMed ID: 32692556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): Enhanced sampling and free energy and kinetics calculations of peptide binding.
    Wang J; Miao Y
    J Chem Phys; 2020 Oct; 153(15):154109. PubMed ID: 33092378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-Protein Interaction-Gaussian Accelerated Molecular Dynamics (PPI-GaMD): Characterization of Protein Binding Thermodynamics and Kinetics.
    Wang J; Miao Y
    J Chem Theory Comput; 2022 Mar; 18(3):1275-1285. PubMed ID: 35099970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives.
    Pawnikar S; Bhattarai A; Wang J; Miao Y
    Adv Appl Bioinform Chem; 2022; 15():1-19. PubMed ID: 35023931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaussian accelerated molecular dynamics (GaMD): principles and applications.
    Wang J; Arantes PR; Bhattarai A; Hsu RV; Pawnikar S; Huang YM; Palermo G; Miao Y
    Wiley Interdiscip Rev Comput Mol Sci; 2021; 11(5):. PubMed ID: 34899998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme.
    Mondal J; Ahalawat N; Pandit S; Kay LE; Vallurupalli P
    PLoS Comput Biol; 2018 May; 14(5):e1006180. PubMed ID: 29775455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attempting Well-Tempered Funnel Metadynamics Simulations for the Evaluation of the Binding Kinetics of Methionine Aminopeptidase-II Inhibitors.
    Rubina ; Moin ST
    J Chem Inf Model; 2023 Dec; 63(24):7729-7743. PubMed ID: 38059911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Ligand Binding to Theophylline RNA Aptamer.
    Akhter S; Tang Z; Wang J; Haboro M; Holmstrom ED; Wang J; Miao Y
    J Chem Inf Model; 2024 Feb; 64(3):1017-1029. PubMed ID: 38226603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the impact of binding free energy and kinetics calculations in modern drug discovery.
    Adediwura VA; Koirala K; Do HN; Wang J; Miao Y
    Expert Opin Drug Discov; 2024 Jun; 19(6):671-682. PubMed ID: 38722032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient States and Barriers from Molecular Simulations and the Milestoning Theory: Kinetics in Ligand-Protein Recognition and Compound Design.
    Tang Z; Chen SH; Chang CA
    J Chem Theory Comput; 2020 Mar; 16(3):1882-1895. PubMed ID: 32031801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in molecular simulation methods for drug binding kinetics.
    Nunes-Alves A; Kokh DB; Wade RC
    Curr Opin Struct Biol; 2020 Oct; 64():126-133. PubMed ID: 32771530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application.
    Jo S; Jiang W; Lee HS; Roux B; Im W
    J Chem Inf Model; 2013 Jan; 53(1):267-77. PubMed ID: 23205773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated Enveloping Distribution Sampling (AEDS) Allows for Efficient Sampling of Orthogonal Degrees of Freedom.
    Gracia Carmona O; Oostenbrink C
    J Chem Inf Model; 2023 Jan; 63(1):197-207. PubMed ID: 36512416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaussian Accelerated Molecular Dynamics in NAMD.
    Pang YT; Miao Y; Wang Y; McCammon JA
    J Chem Theory Comput; 2017 Jan; 13(1):9-19. PubMed ID: 28034310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications.
    Reif MM; Zacharias M
    J Chem Theory Comput; 2022 Jun; 18(6):3873-3893. PubMed ID: 35653503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting ligand binding affinity using on- and off-rates for the SAMPL6 SAMPLing challenge.
    Dixon T; Lotz SD; Dickson A
    J Comput Aided Mol Des; 2018 Oct; 32(10):1001-1012. PubMed ID: 30141102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concerted dynamic motions of an FABP4 model and its ligands revealed by microsecond molecular dynamics simulations.
    Li Y; Li X; Dong Z
    Biochemistry; 2014 Oct; 53(40):6409-17. PubMed ID: 25231537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.