These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 36706843)
41. Regulator of G protein signaling 20 correlates with clinicopathological features and prognosis in triple-negative breast cancer. Li Q; Jin W; Cai Y; Yang F; Chen E; Ye D; Wang Q; Guan X Biochem Biophys Res Commun; 2017 Apr; 485(3):693-697. PubMed ID: 28237701 [TBL] [Abstract][Full Text] [Related]
42. Real-Time Tracking of Uong TNT; Lee KH; Ahn SJ; Kim KW; Min JJ; Hyun H; Yoon MS Front Immunol; 2018; 9():825. PubMed ID: 29770131 [TBL] [Abstract][Full Text] [Related]
43. ZD2-Engineered Gold Nanostar@Metal-Organic Framework Nanoprobes for T Zhang L; Liu C; Gao Y; Li Z; Xing J; Ren W; Zhang L; Li A; Lu G; Wu A; Zeng L Adv Healthc Mater; 2018 Dec; 7(24):e1801144. PubMed ID: 30370656 [TBL] [Abstract][Full Text] [Related]
44. An organic NIR-II nanofluorophore with aggregation-induced emission characteristics for in vivo fluorescence imaging. Wu W; Yang YQ; Yang Y; Yang YM; Wang H; Zhang KY; Guo L; Ge HF; Liu J; Feng H Int J Nanomedicine; 2019; 14():3571-3582. PubMed ID: 31213799 [No Abstract] [Full Text] [Related]
45. Protein arginine methyltransferase 5: A novel therapeutic target for triple-negative breast cancers. Vinet M; Suresh S; Maire V; Monchecourt C; Némati F; Lesage L; Pierre F; Ye M; Lescure A; Brisson A; Meseure D; Nicolas A; Rigaill G; Marangoni E; Del Nery E; Roman-Roman S; Dubois T Cancer Med; 2019 May; 8(5):2414-2428. PubMed ID: 30957988 [TBL] [Abstract][Full Text] [Related]
46. Molecular engineering of a high quantum yield NIR-II molecular fluorophore with aggregation-induced emission (AIE) characteristics for in vivo imaging. Xu P; Kang F; Yang W; Zhang M; Dang R; Jiang P; Wang J Nanoscale; 2020 Feb; 12(8):5084-5090. PubMed ID: 32068224 [TBL] [Abstract][Full Text] [Related]
47. Lipid nanocarriers of a lipid-conjugated estrogenic derivative inhibit tumor growth and enhance cisplatin activity against triple-negative breast cancer: pharmacokinetic and efficacy evaluation. Andey T; Sudhakar G; Marepally S; Patel A; Banerjee R; Singh M Mol Pharm; 2015 Apr; 12(4):1105-20. PubMed ID: 25661724 [TBL] [Abstract][Full Text] [Related]
48. Selective loss of phosphoserine aminotransferase 1 (PSAT1) suppresses migration, invasion, and experimental metastasis in triple negative breast cancer. Metcalf S; Dougherty S; Kruer T; Hasan N; Biyik-Sit R; Reynolds L; Clem BF Clin Exp Metastasis; 2020 Feb; 37(1):187-197. PubMed ID: 31630284 [TBL] [Abstract][Full Text] [Related]
49. Triple Negative Breast Cancer Depends on Sphingosine Kinase 1 (SphK1)/Sphingosine-1-Phosphate (S1P)/Sphingosine 1-Phosphate Receptor 3 (S1PR3)/Notch Signaling for Metastasis. Wang S; Liang Y; Chang W; Hu B; Zhang Y Med Sci Monit; 2018 Apr; 24():1912-1923. PubMed ID: 29605826 [TBL] [Abstract][Full Text] [Related]
50. In vivo magnetic resonance imaging investigating the development of experimental brain metastases due to triple negative breast cancer. Hamilton AM; Foster PJ Clin Exp Metastasis; 2017 Feb; 34(2):133-140. PubMed ID: 28108861 [TBL] [Abstract][Full Text] [Related]
51. Supramolecular assembly of fluorogenic glyco-dots from perylenediimide-based glycoclusters for targeted imaging of cancer cells. Liu Y; Ji DK; Dong L; Galanos N; Zang Y; Li J; Vidal S; He XP Chem Commun (Camb); 2017 Oct; 53(87):11937-11940. PubMed ID: 29048436 [TBL] [Abstract][Full Text] [Related]
52. microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Guo GC; Wang JX; Han ML; Zhang LP; Li L Cell Oncol (Dordr); 2017 Apr; 40(2):157-166. PubMed ID: 28054302 [TBL] [Abstract][Full Text] [Related]
53. Treating metastatic triple negative breast cancer with CD44/neuropilin dual molecular targets of multifunctional nanoparticles. Liang DS; Zhang WJ; Wang AT; Su HT; Zhong HJ; Qi XR Biomaterials; 2017 Aug; 137():23-36. PubMed ID: 28528300 [TBL] [Abstract][Full Text] [Related]
54. Kasten BB; Oliver PG; Kim H; Fan J; Ferrone S; Zinn KR; Buchsbaum DJ Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561763 [TBL] [Abstract][Full Text] [Related]
55. A novel α Zhao M; Ding J; Mao Q; Zhang Y; Gao Y; Ye S; Qin H; Shi H Nanoscale; 2020 Apr; 12(13):6953-6958. PubMed ID: 32191787 [TBL] [Abstract][Full Text] [Related]
56. α Zhong P; Gu X; Cheng R; Deng C; Meng F; Zhong Z Int J Nanomedicine; 2017; 12():7913-7921. PubMed ID: 29138558 [TBL] [Abstract][Full Text] [Related]
57. Cyclin B2 (CCNB2) Stimulates the Proliferation of Triple-Negative Breast Cancer (TNBC) Cells Wu S; Su R; Jia H Dis Markers; 2021; 2021():5511041. PubMed ID: 34354775 [TBL] [Abstract][Full Text] [Related]
58. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy. Kren BT; Unger GM; Abedin MJ; Vogel RI; Henzler CM; Ahmed K; Trembley JH Breast Cancer Res; 2015; 17():19. PubMed ID: 25837326 [TBL] [Abstract][Full Text] [Related]