These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36707608)

  • 1. Deep learning-based hemorrhage detection for diabetic retinopathy screening.
    Aziz T; Charoenlarpnopparut C; Mahapakulchai S
    Sci Rep; 2023 Jan; 13(1):1479. PubMed ID: 36707608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UC-stack: a deep learning computer automatic detection system for diabetic retinopathy classification.
    Fu Y; Wei Y; Chen S; Chen C; Zhou R; Li H; Qiu M; Xie J; Huang D
    Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38271723
    [No Abstract]   [Full Text] [Related]  

  • 4. Hemorrhage Detection Based on 3D CNN Deep Learning Framework and Feature Fusion for Evaluating Retinal Abnormality in Diabetic Patients.
    Maqsood S; Damaševičius R; Maskeliūnas R
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing Conventional and Deep Feature Models for Classifying Fundus Photography of Hemorrhages.
    Aziz T; Charoenlarpnopparut C; Mahapakulchai S
    J Healthc Eng; 2022; 2022():7387174. PubMed ID: 36444209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning framework for the early detection of multi-retinal diseases.
    Ejaz S; Baig R; Ashraf Z; Alnfiai MM; Alnahari MM; Alotaibi RM
    PLoS One; 2024; 19(7):e0307317. PubMed ID: 39052616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques.
    Farooq MS; Arooj A; Alroobaea R; Baqasah AM; Jabarulla MY; Singh D; Sardar R
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep feed forward neural network-based screening system for diabetic retinopathy severity classification using the lion optimization algorithm.
    Vasireddi HK; K SD; G N V RR
    Graefes Arch Clin Exp Ophthalmol; 2022 Apr; 260(4):1245-1263. PubMed ID: 34505925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy.
    Tseng VS; Chen CL; Liang CM; Tai MC; Liu JT; Wu PY; Deng MS; Lee YW; Huang TY; Chen YH
    Transl Vis Sci Technol; 2020 Jul; 9(2):41. PubMed ID: 32855845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing deep learning pre-trained networks on diabetic retinopathy fundus photographs with SLIC-G.
    Lim WX; Chen Z
    Med Biol Eng Comput; 2024 Aug; 62(8):2571-2583. PubMed ID: 38649629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification.
    Hua CH; Huynh-The T; Kim K; Yu SY; Le-Tien T; Park GH; Bang J; Khan WA; Bae SH; Lee S
    Int J Med Inform; 2019 Dec; 132():103926. PubMed ID: 31605882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for diabetic retinopathy detection and classification based on fundus images: A review.
    Tsiknakis N; Theodoropoulos D; Manikis G; Ktistakis E; Boutsora O; Berto A; Scarpa F; Scarpa A; Fotiadis DI; Marias K
    Comput Biol Med; 2021 Aug; 135():104599. PubMed ID: 34247130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel four-step feature selection technique for diabetic retinopathy grading.
    Jagan Mohan N; Murugan R; Goel T; Mirjalili S; Roy P
    Phys Eng Sci Med; 2021 Dec; 44(4):1351-1366. PubMed ID: 34748191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated detection of diabetic retinopathy using custom convolutional neural network.
    Albahli S; Ahmad Hassan Yar GN
    J Xray Sci Technol; 2022; 30(2):275-291. PubMed ID: 35001904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. URNet: System for recommending referrals for community screening of diabetic retinopathy based on deep learning.
    Yang K; Lu Y; Xue L; Yang Y; Chang S; Zhou C
    Exp Biol Med (Maywood); 2023 Jun; 248(11):909-921. PubMed ID: 37466156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetic retinopathy detection through convolutional neural networks with synaptic metaplasticity.
    Vives-Boix V; Ruiz-Fernández D
    Comput Methods Programs Biomed; 2021 Jul; 206():106094. PubMed ID: 34010801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Artificial Intelligence Driven Approach for Classification of Ophthalmic Images using Convolutional Neural Network: An Experimental Study.
    Singh S; Banoub R; Sanghvi HA; Agarwal A; Chalam KV; Gupta S; Pandya AS
    Curr Med Imaging; 2024; 20():e15734056286918. PubMed ID: 38721793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Efficient Deep Learning Network for Automatic Detection of Neovascularization in Color Fundus Images.
    Huang H; Wang X; Ma H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3688-3692. PubMed ID: 34892037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique.
    AbdelMaksoud E; Barakat S; Elmogy M
    Med Biol Eng Comput; 2022 Jul; 60(7):2015-2038. PubMed ID: 35545738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.