These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36707688)

  • 1. SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos.
    Prigent S; Nguyen HN; Leconte L; Valades-Cruz CA; Hajj B; Salamero J; Kervrann C
    Sci Rep; 2023 Jan; 13(1):1489. PubMed ID: 36707688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Based Denoising in High-Speed Portable Reflectance Confocal Microscopy.
    Zhao J; Jain M; Harris UG; Kose K; Curiel-Lewandrowski C; Kang D
    Lasers Surg Med; 2021 Aug; 53(6):880-891. PubMed ID: 33891330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy.
    Qiao C; Zeng Y; Meng Q; Chen X; Chen H; Jiang T; Wei R; Guo J; Fu W; Lu H; Li D; Wang Y; Qiao H; Wu J; Li D; Dai Q
    Nat Commun; 2024 May; 15(1):4180. PubMed ID: 38755148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous recovery of both bright and dim structures from noisy fluorescence microscopy images using a modified TV constraint.
    Xiao C; Smith ZJ; Chu K
    J Microsc; 2019 Jul; 275(1):24-35. PubMed ID: 31026068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denoising of stimulated Raman scattering microscopy images via deep learning.
    Manifold B; Thomas E; Francis AT; Hill AH; Fu D
    Biomed Opt Express; 2019 Aug; 10(8):3860-3874. PubMed ID: 31452980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-enhanced fluorescence microscopy via degeneration decoupling.
    Liu J; Huang X; Chen L; Tan S
    Opt Express; 2020 May; 28(10):14859-14873. PubMed ID: 32403520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy.
    Zhao W; Zhao S; Li L; Huang X; Xing S; Zhang Y; Qiu G; Han Z; Shang Y; Sun DE; Shan C; Wu R; Gu L; Zhang S; Chen R; Xiao J; Mo Y; Wang J; Ji W; Chen X; Ding B; Liu Y; Mao H; Song BL; Tan J; Liu J; Li H; Chen L
    Nat Biotechnol; 2022 Apr; 40(4):606-617. PubMed ID: 34782739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeconvolutionLab2: An open-source software for deconvolution microscopy.
    Sage D; Donati L; Soulez F; Fortun D; Schmit G; Seitz A; Guiet R; Vonesch C; Unser M
    Methods; 2017 Feb; 115():28-41. PubMed ID: 28057586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Denoising of two-photon fluorescence images with block-matching 3D filtering.
    Danielyan A; Wu YW; Shih PY; Dembitskaya Y; Semyanov A
    Methods; 2014 Jul; 68(2):308-16. PubMed ID: 24657185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric blind deconvolution for confocal laser scanning microscopy.
    Pankajakshan P; Zhang B; Blanc-Feraud L; Kam Z; Olivo-Marin JC; Zerubia J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6532-5. PubMed ID: 18003522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DVDeconv: An Open-Source MATLAB Toolbox for Depth-Variant Asymmetric Deconvolution of Fluorescence Micrographs.
    Kim B
    Cells; 2021 Feb; 10(2):. PubMed ID: 33671933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative fluorescence microscopy and image deconvolution.
    Swedlow JR
    Methods Cell Biol; 2013; 114():407-26. PubMed ID: 23931516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI.
    Tian Q; Li Z; Fan Q; Polimeni JR; Bilgic B; Salat DH; Huang SY
    Neuroimage; 2022 Jun; 253():119033. PubMed ID: 35240299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Progress in filters for denoising cryo-electron microscopy images].
    Huang XR; Li S; Gao S
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 53(2):425-433. PubMed ID: 33879921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution restoration of 3D structures from widefield images with extreme low signal-to-noise-ratio.
    Arigovindan M; Fung JC; Elnatan D; Mennella V; Chan YH; Pollard M; Branlund E; Sedat JW; Agard DA
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17344-9. PubMed ID: 24106307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denoising of three-dimensional fast spin echo magnetic resonance images of knee joints using spatial-variant noise-relevant residual learning of convolution neural network.
    Zhao S; Cahill DG; Li S; Xiao F; Blu T; Griffith JF; Chen W
    Comput Biol Med; 2022 Dec; 151(Pt A):106295. PubMed ID: 36423533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging.
    Liu J; Yang Y; Wernick MN; Pretorius PH; King MA
    Med Phys; 2021 Jan; 48(1):156-168. PubMed ID: 33145782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved deconvolution of very weak confocal signals.
    Day KJ; La Rivière PJ; Chandler T; Bindokas VP; Ferrier NJ; Glick BS
    F1000Res; 2017; 6():787. PubMed ID: 28868135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.