BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36707775)

  • 1. Detecting genomic deletions from high-throughput sequence data with unsupervised learning.
    Li X; Wu Y
    BMC Bioinformatics; 2023 Jan; 23(Suppl 8):568. PubMed ID: 36707775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated filtering of genome-wide large deletions through an ensemble deep learning framework.
    Hu Y; Mangal S; Zhang L; Zhou X
    Methods; 2022 Oct; 206():77-86. PubMed ID: 36038049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAMnet: detecting and genotyping deletions and insertions based on long reads and a deep learning approach.
    Ding H; Luo J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35580841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved approach for accurate and efficient calling of structural variations with low-coverage sequence data.
    Zhang J; Wang J; Wu Y
    BMC Bioinformatics; 2012 Apr; 13 Suppl 6(Suppl 6):S6. PubMed ID: 22537045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network.
    Cai L; Wu Y; Gao J
    BMC Bioinformatics; 2019 Dec; 20(1):665. PubMed ID: 31830921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BreakNet: detecting deletions using long reads and a deep learning approach.
    Luo J; Ding H; Shen J; Zhai H; Wu Z; Yan C; Luo H
    BMC Bioinformatics; 2021 Dec; 22(1):577. PubMed ID: 34856923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysgu: efficient structural variant calling using short or long reads.
    Cleal K; Baird DM
    Nucleic Acids Res; 2022 May; 50(9):e53. PubMed ID: 35100420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A recurrence-based approach for validating structural variation using long-read sequencing technology.
    Zhao X; Weber AM; Mills RE
    Gigascience; 2017 Aug; 6(8):1-9. PubMed ID: 28873962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GASOLINE: detecting germline and somatic structural variants from long-reads data.
    Magi A; Mattei G; Mingrino A; Caprioli C; Ronchini C; Frigè G; Semeraro R; Baragli M; Bolognini D; Colombo E; Mazzarella L; Pelicci PG
    Sci Rep; 2023 Nov; 13(1):20817. PubMed ID: 38012350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SVmine improves structural variation detection by integrative mining of predictions from multiple algorithms.
    Xia Y; Liu Y; Deng M; Xi R
    Bioinformatics; 2017 Nov; 33(21):3348-3354. PubMed ID: 29036467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SVsearcher: A more accurate structural variation detection method in long read data.
    Zheng Y; Shang X; Sung WK
    Comput Biol Med; 2023 May; 158():106843. PubMed ID: 37019014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toolkit for automated and rapid discovery of structural variants.
    Soylev A; Kockan C; Hormozdiari F; Alkan C
    Methods; 2017 Oct; 129():3-7. PubMed ID: 28583483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PRISM: pair-read informed split-read mapping for base-pair level detection of insertion, deletion and structural variants.
    Jiang Y; Wang Y; Brudno M
    Bioinformatics; 2012 Oct; 28(20):2576-83. PubMed ID: 22851530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seeksv: an accurate tool for somatic structural variation and virus integration detection.
    Liang Y; Qiu K; Liao B; Zhu W; Huang X; Li L; Chen X; Li K
    Bioinformatics; 2017 Jan; 33(2):184-191. PubMed ID: 27634948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAPTR-SV: a hybrid method for the detection of structural variants.
    Bickhart DM; Hutchison JL; Xu L; Schnabel RD; Taylor JF; Reecy JM; Schroeder S; Van Tassell CP; Sonstegard TS; Liu GE
    Bioinformatics; 2015 Jul; 31(13):2084-90. PubMed ID: 25686638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of structural variants detected by PacBio-CLR and ONT sequencing in pear.
    Liu Y; Zhang M; Wang R; Li B; Jiang Y; Sun M; Chang Y; Wu J
    BMC Genomics; 2022 Dec; 23(1):830. PubMed ID: 36517766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DELLY: structural variant discovery by integrated paired-end and split-read analysis.
    Rausch T; Zichner T; Schlattl A; Stütz AM; Benes V; Korbel JO
    Bioinformatics; 2012 Sep; 28(18):i333-i339. PubMed ID: 22962449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone.
    Trappe K; Emde AK; Ehrlich HC; Reinert K
    Bioinformatics; 2014 Dec; 30(24):3484-90. PubMed ID: 25028727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SVM²: an improved paired-end-based tool for the detection of small genomic structural variations using high-throughput single-genome resequencing data.
    Chiara M; Pesole G; Horner DS
    Nucleic Acids Res; 2012 Oct; 40(18):e145. PubMed ID: 22735696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. svclassify: a method to establish benchmark structural variant calls.
    Parikh H; Mohiyuddin M; Lam HY; Iyer H; Chen D; Pratt M; Bartha G; Spies N; Losert W; Zook JM; Salit M
    BMC Genomics; 2016 Jan; 17():64. PubMed ID: 26772178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.