These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36707885)

  • 1. The Berlin Bimanual Test for Tetraplegia (BeBiTT): development, psychometric properties, and sensitivity to change in assistive hand exoskeleton application.
    Angerhöfer C; Vermehren M; Colucci A; Nann M; Koßmehl P; Niedeggen A; Kim WS; Chang WK; Paik NJ; Hömberg V; Soekadar SR
    J Neuroeng Rehabil; 2023 Jan; 20(1):17. PubMed ID: 36707885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation into the validity and reliability of the Chinese version of Spinal Cord Independence Measure III (SCIM III).
    Xing H; Liu N; Biering-Sørensen F
    Clin Rehabil; 2021 Mar; 35(3):436-445. PubMed ID: 33103924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility and Safety of Bilateral Hybrid EEG/EOG Brain/Neural-Machine Interaction.
    Nann M; Peekhaus N; Angerhöfer C; Soekadar SR
    Front Hum Neurosci; 2020; 14():580105. PubMed ID: 33362490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DiSCIoser: unlocking recovery potential of arm sensorimotor functions after spinal cord injury by promoting activity-dependent brain plasticity by means of brain-computer interface technology: a randomized controlled trial to test efficacy.
    Colamarino E; Lorusso M; Pichiorri F; Toppi J; Tamburella F; Serratore G; Riccio A; Tomaiuolo F; Bigioni A; Giove F; Scivoletto G; Cincotti F; Mattia D
    BMC Neurol; 2023 Nov; 23(1):414. PubMed ID: 37990160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia.
    Soekadar SR; Witkowski M; Gómez C; Opisso E; Medina J; Cortese M; Cempini M; Carrozza MC; Cohen LG; Birbaumer N; Vitiello N
    Sci Robot; 2016 Dec; 1(1):. PubMed ID: 33157855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration.
    Benabid AL; Costecalde T; Eliseyev A; Charvet G; Verney A; Karakas S; Foerster M; Lambert A; Morinière B; Abroug N; Schaeffer MC; Moly A; Sauter-Starace F; Ratel D; Moro C; Torres-Martinez N; Langar L; Oddoux M; Polosan M; Pezzani S; Auboiroux V; Aksenova T; Mestais C; Chabardes S
    Lancet Neurol; 2019 Dec; 18(12):1112-1122. PubMed ID: 31587955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Capabilities of Upper Extremity Test (CUE-T) in Children With Tetraplegia.
    Dent K; Grampurohit N; Thielen CC; Sadowsky C; Davidson L; Taylor HB; Bultman J; Gaughan J; Marino RJ; Mulcahey MJ
    Top Spinal Cord Inj Rehabil; 2018; 24(3):239-251. PubMed ID: 29997427
    [No Abstract]   [Full Text] [Related]  

  • 8. Upper extremity function in persons with tetraplegia: relationships between strength, capacity, and the spinal cord independence measure.
    Rudhe C; van Hedel HJ
    Neurorehabil Neural Repair; 2009 Jun; 23(5):413-21. PubMed ID: 19261766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP): reviewing measurement specific to the upper limb in tetraplegia.
    Kalsi-Ryan S; Curt A; Verrier MC; Fehlings MG
    J Neurosurg Spine; 2012 Sep; 17(1 Suppl):65-76. PubMed ID: 22985372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Psychometric rigor of the Grasp and Release Test for measuring functional limitation of persons with tetraplegia: a preliminary analysis.
    Mulcahey MJ; Smith BT; Betz RR
    J Spinal Cord Med; 2004; 27(1):41-6. PubMed ID: 15156936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproducibility, Construct Validity, and Responsiveness of the Tetraplegia Upper Limb Activities Questionnaire, TUAQ. Part 2.
    Wangdell J; Hill B; Dunn JA
    Arch Phys Med Rehabil; 2022 Dec; 103(12):2296-2302. PubMed ID: 35595067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinically Significant Gains in Skillful Grasp Coordination by an Individual With Tetraplegia Using an Implanted Brain-Computer Interface With Forearm Transcutaneous Muscle Stimulation.
    Bockbrader M; Annetta N; Friedenberg D; Schwemmer M; Skomrock N; Colachis S; Zhang M; Bouton C; Rezai A; Sharma G; Mysiw WJ
    Arch Phys Med Rehabil; 2019 Jul; 100(7):1201-1217. PubMed ID: 30902630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Despite limitations in content range, the SCIM-III is reproducible and a valid indicator of physical function in youths with spinal cord injury and dysfunction.
    Mulcahey MJ; Thielen CC; Sadowsky C; Silvestri JL; Martin R; White L; Cagney JA; Vogel LC; Schottler J; Davidson L; Parry I; Taylor HB; Higgins K; Feltz ML; Sinko R; Bultman J; Mazurkiewicz J; Gaughan J
    Spinal Cord; 2018 Apr; 56(4):332-340. PubMed ID: 29269778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of the short version of the Van Lieshout Test in an Italian population with cervical spinal cord injuries: a cross-sectional study.
    Berardi A; Biondillo A; Màrquez MA; De Santis R; Fabbrini G; Tofani M; Valente D; Galeoto G
    Spinal Cord; 2019 Apr; 57(4):339-345. PubMed ID: 30552412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal consistency and validity of the Italian version of the Jebsen-Taylor hand function test (JTHFT-IT) in people with tetraplegia.
    Panuccio F; Galeoto G; Marquez MA; Tofani M; Nobilia M; Culicchia G; Berardi A
    Spinal Cord; 2021 Mar; 59(3):266-273. PubMed ID: 33446935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR
    J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single-subject study of robotic upper limb training in the subacute phase for four persons with cervical spinal cord injury.
    Sørensen L; Månum G
    Spinal Cord Ser Cases; 2019; 5():29. PubMed ID: 31240123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical utility of a pediatric hand exoskeleton: identifying users, practicability, and acceptance, and recommendations for design improvement.
    Lieber J; Dittli J; Lambercy O; Gassert R; Meyer-Heim A; van Hedel HJA
    J Neuroeng Rehabil; 2022 Feb; 19(1):17. PubMed ID: 35148786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand.
    Soekadar SR; Witkowski M; Vitiello N; Birbaumer N
    Biomed Tech (Berl); 2015 Jun; 60(3):199-205. PubMed ID: 25490027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.