BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36707993)

  • 1. TIVAN-indel: a computational framework for annotating and predicting non-coding regulatory small insertions and deletions.
    Agarwal A; Zhao F; Jiang Y; Chen L
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36707993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TIVAN: tissue-specific cis-eQTL single nucleotide variant annotation and prediction.
    Chen L; Wang Y; Yao B; Mitra A; Wang X; Qin X
    Bioinformatics; 2019 May; 35(9):1573-1575. PubMed ID: 30304335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TVAR: assessing tissue-specific functional effects of non-coding variants with deep learning.
    Yang H; Chen R; Wang Q; Wei Q; Ji Y; Zhong X; Li B
    Bioinformatics; 2022 Oct; 38(20):4697-4704. PubMed ID: 36063453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach.
    Agarwal A; Chen L
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting target genes of non-coding regulatory variants with IRT.
    Wu Z; Ioannidis NM; Zou J
    Bioinformatics; 2020 Aug; 36(16):4440-4448. PubMed ID: 32330225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EpiSAFARI: sensitive detection of valleys in epigenetic signals for enhancing annotations of functional elements.
    Harmanci A; Harmanci AS; Swaminathan J; Gopalakrishnan V
    Bioinformatics; 2020 Feb; 36(4):1014-1021. PubMed ID: 31501853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory annotation of genomic intervals based on tissue-specific expression QTLs.
    Xu T; Jin P; Qin ZS
    Bioinformatics; 2020 Feb; 36(3):690-697. PubMed ID: 31504167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying functional impact of non-coding variants with multi-task Bayesian neural network.
    Xu C; Liu Q; Zhou J; Xie M; Feng J; Jiang T
    Bioinformatics; 2020 Mar; 36(5):1397-1404. PubMed ID: 31693090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach.
    Schmidt EM; Zhang J; Zhou W; Chen J; Mohlke KL; Chen YE; Willer CJ
    Bioinformatics; 2015 Aug; 31(16):2601-6. PubMed ID: 25886982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors.
    Amariuta T; Luo Y; Gazal S; Davenport EE; van de Geijn B; Ishigaki K; Westra HJ; Teslovich N; Okada Y; Yamamoto K; ; Price AL; Raychaudhuri S
    Am J Hum Genet; 2019 May; 104(5):879-895. PubMed ID: 31006511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model.
    Hu R; Pei G; Jia P; Zhao Z
    Methods; 2021 May; 189():44-53. PubMed ID: 31672653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU.
    Fang CH; Theera-Ampornpunt N; Roth MA; Grama A; Chaterji S
    BMC Bioinformatics; 2019 Oct; 20(1):488. PubMed ID: 31590652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maps of open chromatin highlight cell type-restricted patterns of regulatory sequence variation at hematological trait loci.
    Paul DS; Albers CA; Rendon A; Voss K; Stephens J; ; van der Harst P; Chambers JC; Soranzo N; Ouwehand WH; Deloukas P
    Genome Res; 2013 Jul; 23(7):1130-41. PubMed ID: 23570689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome.
    Wang Y; Chen L
    Bioinformatics; 2022 Dec; 38(24):5340-5351. PubMed ID: 36271868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and application of an integrated allele-specific pipeline for methylomic and epigenomic analysis (MEA).
    Richard Albert J; Koike T; Younesy H; Thompson R; Bogutz AB; Karimi MM; Lorincz MC
    BMC Genomics; 2018 Jun; 19(1):463. PubMed ID: 29907088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multi-omic Integrative Scheme Characterizes Tissues of Action at Loci Associated with Type 2 Diabetes.
    Torres JM; Abdalla M; Payne A; Fernandez-Tajes J; Thurner M; Nylander V; Gloyn AL; Mahajan A; McCarthy MI
    Am J Hum Genet; 2020 Dec; 107(6):1011-1028. PubMed ID: 33186544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome.
    Ferlaino M; Rogers MF; Shihab HA; Mort M; Cooper DN; Gaunt TR; Campbell C
    BMC Bioinformatics; 2017 Oct; 18(1):442. PubMed ID: 28985712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants.
    Ward LD; Kellis M
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D930-4. PubMed ID: 22064851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.