These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36708321)

  • 41. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.
    Benard N; Perrault R; Coisne D
    Ann Biomed Eng; 2006 Aug; 34(8):1259-71. PubMed ID: 16799830
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational Comparison Between a Classic Bifurcated Endograft and a Customized Model With "Dog Bone"-Shaped Limbs.
    Georgakarakos E; Xenakis A; Georgiadis GS
    J Endovasc Ther; 2019 Apr; 26(2):250-257. PubMed ID: 30898071
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hemodynamics in a Pediatric Ascending Aorta Using a Viscoelastic Pediatric Blood Model.
    Good BC; Deutsch S; Manning KB
    Ann Biomed Eng; 2016 Apr; 44(4):1019-35. PubMed ID: 26159560
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Effect of Hematocrit and Nanoparticles Diameter on Hemodynamic Parameters and Drug Delivery in Abdominal Aortic Aneurysm with Consideration of Blood Pulsatile Flow.
    Jafarzadeh S; Nasiri Sadr A; Kaffash E; Goudarzi S; Golab E; Karimipour A
    Comput Methods Programs Biomed; 2020 Oct; 195():105545. PubMed ID: 32521389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integrated particle image velocimetry and fluid-structure interaction analysis for patient-specific abdominal aortic aneurysm studies.
    Özcan C; Kocatürk Ö; Işlak C; Öztürk C
    Biomed Eng Online; 2023 Dec; 22(1):113. PubMed ID: 38044423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms.
    Lozowy RJ; Kuhn DC; Ducas AA; Boyd AJ
    Cardiovasc Eng Technol; 2017 Mar; 8(1):57-69. PubMed ID: 27896659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of aortic bifurcation geometry on pressure and peak wall stress in abdominal aorta: Fluid-structure interaction study.
    Jagos J; Schwarz D; Polzer S; Bursa J
    Med Eng Phys; 2023 Aug; 118():104014. PubMed ID: 37536835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study.
    Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):319-28. PubMed ID: 12186711
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of stenosis and dilatation on the hemodynamic parameters associated with left coronary artery.
    Sandeep S; Shine SR
    Comput Methods Programs Biomed; 2021 Jun; 204():106052. PubMed ID: 33789214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A study on the transport and interaction between blood flow and low-density-lipoprotein in near-wall regions of blood vessels.
    Choudhury S; Anupindi K; Patnaik BSV
    Comput Methods Biomech Biomed Engin; 2021 Oct; 24(13):1473-1487. PubMed ID: 33966566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries?
    Arzani A
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flow patterns and wall shear stresses in patient-specific models of the abdominal aortic aneurysm.
    Leung J; Wright A; Cheshire N; Thom SA; Hughes AD; Xu XY
    Stud Health Technol Inform; 2004; 103():235-42. PubMed ID: 15747926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation.
    Abbasian M; Shams M; Valizadeh Z; Moshfegh A; Javadzadegan A; Cheng S
    Comput Methods Programs Biomed; 2020 Apr; 186():105185. PubMed ID: 31739277
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.
    Evju Ø; Valen-Sendstad K; Mardal KA
    J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Importance of Non-Newtonian Computational Fluid Modeling on Severely Calcified Aortic Valve Geometries-Insights From Quasi-Steady State Simulations.
    Mirza A; Ramaswamy S
    J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35599346
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of the hemodynamic flow conditions and blood-induced stresses inside an abdominal aortic aneurysm by means of a SPH numerical model.
    Aricò C; Sinagra M; Nagy R; Napoli E; Tucciarelli T
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3263. PubMed ID: 31508895
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Blood flow analysis of the aortic arch using computational fluid dynamics.
    Numata S; Itatani K; Kanda K; Doi K; Yamazaki S; Morimoto K; Manabe K; Ikemoto K; Yaku H
    Eur J Cardiothorac Surg; 2016 Jun; 49(6):1578-85. PubMed ID: 26792932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.