These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36708385)

  • 21. Pattern formation in an N+Q component reaction-diffusion system.
    Pearson JE; Bruno WJ
    Chaos; 1992 Oct; 2(4):513-524. PubMed ID: 12780000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Turing Instabilities are Not Enough to Ensure Pattern Formation.
    Krause AL; Gaffney EA; Jewell TJ; Klika V; Walker BJ
    Bull Math Biol; 2024 Jan; 86(2):21. PubMed ID: 38253936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Turing Pattern Formation in Reaction-Cross-Diffusion Systems with a Bilayer Geometry.
    Diez A; Krause AL; Maini PK; Gaffney EA; Seirin-Lee S
    Bull Math Biol; 2024 Jan; 86(2):13. PubMed ID: 38170298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of landscape fragmentation on Turing-pattern formation.
    Zaker N; Cobbold HA; Kumari S
    Math Biosci Eng; 2022 Jan; 19(3):2506-2537. PubMed ID: 35240795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion.
    Mvogo A; Macías-Díaz JE; Kofané TC
    Phys Rev E; 2018 Mar; 97(3-1):032129. PubMed ID: 29776049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Instabilities and patterns in coupled reaction-diffusion layers.
    Catllá AJ; McNamara A; Topaz CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026215. PubMed ID: 22463307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ.
    Krause AL; Klika V; Woolley TE; Gaffney EA
    J R Soc Interface; 2020 Jan; 17(162):20190621. PubMed ID: 31937231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of square spatial periodic forcing on oscillatory hexagon patterns in coupled reaction-diffusion systems.
    Fan W; Ma F; Tong Y; Liu Q; Liu R; He Y; Liu F
    Phys Chem Chem Phys; 2023 Oct; 25(38):26023-26031. PubMed ID: 37740348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern formation from spatially heterogeneous reaction-diffusion systems.
    Van Gorder RA
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20210001. PubMed ID: 34743604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffusive instabilities in hyperbolic reaction-diffusion equations.
    Zemskov EP; Horsthemke W
    Phys Rev E; 2016 Mar; 93(3):032211. PubMed ID: 27078348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Instability of turing patterns in reaction-diffusion-ODE systems.
    Marciniak-Czochra A; Karch G; Suzuki K
    J Math Biol; 2017 Feb; 74(3):583-618. PubMed ID: 27305913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial instabilities in reaction random walks with direction-independent kinetics.
    Horsthemke W
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2651-63. PubMed ID: 11970066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating the Turing conditions for diffusion-driven instability in the presence of a binding immobile substrate.
    Korvasová K; Gaffney EA; Maini PK; Ferreira MA; Klika V
    J Theor Biol; 2015 Feb; 367():286-295. PubMed ID: 25484005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A graph-theoretic method for detecting potential Turing bifurcations.
    Mincheva M; Roussel MR
    J Chem Phys; 2006 Nov; 125(20):204102. PubMed ID: 17144685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pattern formation of reaction-diffusion system with chemotaxis terms.
    Cao Q; Wu J
    Chaos; 2021 Nov; 31(11):113118. PubMed ID: 34881578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations.
    Baurmann M; Gross T; Feudel U
    J Theor Biol; 2007 Mar; 245(2):220-9. PubMed ID: 17140604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations.
    Madzvamuse A; Ndakwo HS; Barreira R
    J Math Biol; 2015 Mar; 70(4):709-43. PubMed ID: 24671430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffusive instability in hyperbolic reaction-diffusion equation with different inertia.
    Ghorai S; Poria S; Bairagi N
    Chaos; 2022 Jan; 32(1):013101. PubMed ID: 35105144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems.
    Krause AL; Klika V; Woolley TE; Gaffney EA
    Phys Rev E; 2018 May; 97(5-1):052206. PubMed ID: 29906857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model.
    Banerjee M; Banerjee S
    Math Biosci; 2012 Mar; 236(1):64-76. PubMed ID: 22207074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.