BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36708489)

  • 1. A High-Specific-Activity L-aspartate-α-Decarboxylase from Bacillus aryabhattai Gel-09 and Site-Directed Mutation to Improve Its Substrate Tolerance.
    Ding Q; Duan X
    Appl Biochem Biotechnol; 2023 Oct; 195(10):5802-5822. PubMed ID: 36708489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum.
    Shen Y; Zhao L; Li Y; Zhang L; Shi G
    Biotechnol Lett; 2014 Aug; 36(8):1681-6. PubMed ID: 24737081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular engineering of L-aspartate-α-decarboxylase for improved activity and catalytic stability.
    Pei W; Zhang J; Deng S; Tigu F; Li Y; Li Q; Cai Z; Li Y
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6015-6021. PubMed ID: 28589224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering protonation conformation of l-aspartate-α-decarboxylase to relieve mechanism-based inactivation.
    Qian Y; Lu C; Liu J; Song W; Chen X; Luo Q; Liu L; Wu J
    Biotechnol Bioeng; 2020 Jun; 117(6):1607-1614. PubMed ID: 32096553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular Expression of L-Aspartate-α-Decarboxylase from Bacillus tequilensis and Its Application in the Biosynthesis of β-Alanine.
    Feng Z; Zhang J; Chen G; Ge Y; Zhang X; Zhu H
    Appl Biochem Biotechnol; 2019 Sep; 189(1):273-283. PubMed ID: 30972708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing β-alanine production from glucose in genetically modified Corynebacterium glutamicum by metabolic pathway engineering.
    Wang JY; Rao ZM; Xu JZ; Zhang WG
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9153-9166. PubMed ID: 34837493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a dual-fluorescence reporter system for high-throughput screening of L-aspartate-α-decarboxylase.
    Fei M; Mao X; Chen Y; Lu Y; Wang L; Yang J; Qiu J; Sun D
    Acta Biochim Biophys Sin (Shanghai); 2020 Dec; 52(12):1420-1426. PubMed ID: 33313655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of cysteine sulfinic acid decarboxylase from Tribolium castaneum and its application in the production of β-alanine.
    Liu Z; Zheng W; Ye W; Wang C; Gao Y; Cui W; Zhou Z
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9443-9453. PubMed ID: 31696283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate inactivation of bacterial L-aspartate α-decarboxylase from Corynebacterium jeikeium K411 and improvement of molecular stability by saturation mutagenesis.
    Mo Q; Mao A; Li Y; Shi G
    World J Microbiol Biotechnol; 2019 Mar; 35(4):62. PubMed ID: 30923994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of β-alanine through co-expressing two different subtypes of L-aspartate-α-decarboxylase.
    Wang L; Piao X; Cui S; Hu M; Tao Y
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):465-474. PubMed ID: 32524454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery and Engineering of a Novel Bacterial L-Aspartate α-Decarboxylase for Efficient Bioconversion.
    Cui W; Liu H; Ye Y; Han L; Zhou Z
    Foods; 2023 Dec; 12(24):. PubMed ID: 38137227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and rational modification of aspartate 4-decarboxylase from Acinetobacter radioresistens for the production of l-alanine.
    Liu Z; Wang X; Yu J; Han L; Zhou Z
    Biotechnol Bioeng; 2021 Jul; 118(7):2493-2502. PubMed ID: 33760222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of aspartate aminotransferase into an L-aspartate beta-decarboxylase by a triple active-site mutation.
    Graber R; Kasper P; Malashkevich VN; Strop P; Gehring H; Jansonius JN; Christen P
    J Biol Chem; 1999 Oct; 274(44):31203-8. PubMed ID: 10531314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Characterization of L-aspartate-α-decarboxylase from Bacillus subtilis].
    Deng S; Zhang J; Cai Z; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2015 Aug; 31(8):1184-93. PubMed ID: 26762040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli.
    Zou X; Guo L; Huang L; Li M; Zhang S; Yang A; Zhang Y; Zhu L; Zhang H; Zhang J; Feng Z
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2545-2559. PubMed ID: 31989219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Engineering of a Pyridoxal-5'-Phosphate-Dependent l-Aspartate-α-Decarboxylase from
    Yu XJ; Huang CY; Xu XD; Chen H; Liang MJ; Xu ZX; Xu HX; Wang Z
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32178239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rerouting Fluxes of the Central Carbon Metabolism and Relieving Mechanism-Based Inactivation of l-Aspartate-α-decarboxylase for Fermentative Production of β-Alanine in
    Li B; Zhang B; Wang P; Cai X; Chen YY; Yang YF; Liu ZQ; Zheng YG
    ACS Synth Biol; 2022 May; 11(5):1908-1918. PubMed ID: 35476404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield.
    Piao X; Wang L; Lin B; Chen H; Liu W; Tao Y
    Metab Eng; 2019 Jul; 54():244-254. PubMed ID: 31063790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of bacterial L-aspartate-alpha-decarboxylase in tobacco increases beta-alanine and pantothenate levels and improves thermotolerance.
    Fouad WM; Rathinasabapathi B
    Plant Mol Biol; 2006 Mar; 60(4):495-505. PubMed ID: 16525887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression, biochemical and structural characterization of high-specific-activity β-amylase from Bacillus aryabhattai GEL-09 for application in starch hydrolysis.
    Duan X; Zhu Q; Zhang X; Shen Z; Huang Y
    Microb Cell Fact; 2021 Sep; 20(1):182. PubMed ID: 34537082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.