These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36709456)

  • 1. Average Causal Effect Estimation Via Instrumental Variables: the No Simultaneous Heterogeneity Assumption.
    Hartwig FP; Wang L; Davey Smith G; Davies NM
    Epidemiology; 2023 May; 34(3):325-332. PubMed ID: 36709456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneity in the Instrument-exposure Association and Point Estimation Using Binary Instrumental Variables.
    Hartwig FP; Wang L; Davey Smith G; Davies NM
    Epidemiology; 2022 Nov; 33(6):828-831. PubMed ID: 35895576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mendelian randomization mixed-scale treatment effect robust identification and estimation for causal inference.
    Liu Z; Ye T; Sun B; Schooling M; Tchetgen ET
    Biometrics; 2023 Sep; 79(3):2208-2219. PubMed ID: 35950778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Challenges and factors that influencing causal inference and interpretation, based on Mendelian randomization studies].
    Wang YZ; Shen HB
    Zhonghua Liu Xing Bing Xue Za Zhi; 2020 Aug; 41(8):1231-1236. PubMed ID: 32867428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change analysis for intermediate disease markers in nutritional epidemiology: a causal inference perspective.
    Tang D; Hu Y; Zhang N; Xiao X; Zhao X
    BMC Med Res Methodol; 2024 Feb; 24(1):49. PubMed ID: 38413862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: Average Causal Effect Estimation via Instrumental Variables: The No Simultaneous Heterogeneity Assumption.
    Epidemiology; 2024 Jul; 35(4):e15. PubMed ID: 38661326
    [No Abstract]   [Full Text] [Related]  

  • 7. Insights into the Cross-world Independence Assumption of Causal Mediation Analysis.
    Andrews RM; Didelez V
    Epidemiology; 2021 Mar; 32(2):209-219. PubMed ID: 33512846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing them.
    Lawlor D; Richmond R; Warrington N; McMahon G; Davey Smith G; Bowden J; Evans DM
    Wellcome Open Res; 2017 Feb; 2():11. PubMed ID: 28405635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Machine Learning Estimation of Conditional Average Treatment Effects: A Blessing and a Curse.
    Post RAJ; Petkovic M; van den Heuvel IL; van den Heuvel ER
    Epidemiology; 2024 Jan; 35(1):32-40. PubMed ID: 37889951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instrumental variable estimation of truncated local average treatment effects.
    Choi BY
    PLoS One; 2021; 16(4):e0249642. PubMed ID: 33819276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates.
    Burgess S; Labrecque JA
    Eur J Epidemiol; 2018 Oct; 33(10):947-952. PubMed ID: 30039250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clarifying causal mediation analysis: Effect identification via three assumptions and five potential outcomes.
    Nguyen TQ; Schmid I; Ogburn EL; Stuart EA
    J Causal Inference; 2022 Jan; 10(1):246-279. PubMed ID: 38720813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption.
    Bowden J; Del Greco M F; Minelli C; Zhao Q; Lawlor DA; Sheehan NA; Thompson J; Davey Smith G
    Int J Epidemiol; 2019 Jun; 48(3):728-742. PubMed ID: 30561657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instrumental variables as bias amplifiers with general outcome and confounding.
    Ding P; VanderWeele TJ; Robins JM
    Biometrika; 2017 Jun; 104(2):291-302. PubMed ID: 29033459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression.
    Bowden J; Davey Smith G; Burgess S
    Int J Epidemiol; 2015 Apr; 44(2):512-25. PubMed ID: 26050253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity analysis of G-estimators to invalid instrumental variables.
    Vancak V; Sjölander A
    Stat Med; 2023 Oct; 42(23):4257-4281. PubMed ID: 37497859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing for non-linear causal effects using a binary genotype in a Mendelian randomization study: application to alcohol and cardiovascular traits.
    Silverwood RJ; Holmes MV; Dale CE; Lawlor DA; Whittaker JC; Smith GD; Leon DA; Palmer T; Keating BJ; Zuccolo L; Casas JP; Dudbridge F;
    Int J Epidemiol; 2014 Dec; 43(6):1781-90. PubMed ID: 25192829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting Instrumental Variable methods for causal inference to the Estimand Framework.
    Bowden J; Bornkamp B; Glimm E; Bretz F
    Stat Med; 2021 Nov; 40(25):5605-5627. PubMed ID: 34288021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust inference of bi-directional causal relationships in presence of correlated pleiotropy with GWAS summary data.
    Xue H; Pan W
    PLoS Genet; 2022 May; 18(5):e1010205. PubMed ID: 35576237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.