BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36709556)

  • 1. The role of muscle forces and gait cycle discretization when assessing acetabular cup primary stability: A finite element study.
    Fallahnezhad K; O'Rourke D; Bahl JS; Thewlis D; Taylor M
    Comput Methods Programs Biomed; 2023 Mar; 230():107351. PubMed ID: 36709556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of musculoskeletal loading regimes on numerical evaluations of acetabular component.
    Mukherjee K; Gupta S
    Proc Inst Mech Eng H; 2016 Oct; 230(10):918-29. PubMed ID: 27475907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of interfacial parameters on cup-bone relative micromotions. A finite element investigation.
    Spears IR; Pfleiderer M; Schneider E; Hille E; Morlock MM
    J Biomech; 2001 Jan; 34(1):113-20. PubMed ID: 11425070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No effect of femoral offset on bone implant micromotion in an experimental model.
    Amirouche F; Solitro G; Walia A
    Orthop Traumatol Surg Res; 2016 May; 102(3):379-85. PubMed ID: 26970866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of micromotion in modular acetabular components during gait and subluxation: a finite element investigation.
    Amirouche F; Romero F; Gonzalez M; Aram L
    J Biomech Eng; 2008 Apr; 130(2):021002. PubMed ID: 18412489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in hip joint contact stress during a gait cycle based on the individualized modeling method of "gait-musculoskeletal system-finite element".
    Xiong B; Yang P; Lin T; Xu J; Xie Y; Guo Y; Liu C; Zhou Q; Lai Q; He W; Wei Q; Zhang Q
    J Orthop Surg Res; 2022 May; 17(1):267. PubMed ID: 35568957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of under-reaming on the cup/bone interface of a press fit hip replacement.
    Zivkovic I; Gonzalez M; Amirouche F
    J Biomech Eng; 2010 Apr; 132(4):041008. PubMed ID: 20387971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of joint load, motions and contact stress and bone-implant interface micromotion of three implant designs for total ankle arthroplasty.
    Zhang Y; Chen Z; Zhao H; Zhao D; Zhang X; Ma X; Jin Z
    Comput Methods Programs Biomed; 2022 Aug; 223():106976. PubMed ID: 35785557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical effect of metal augment and bone graft on cup stability for acetabular reconstruction of total hip arthroplasty in hip dysplasia: a finite element analysis.
    Wang Y; Wang M; Li C; Nakamura Y; Deng L; Yamako G; Chosa E; Pan C
    BMC Musculoskelet Disord; 2022 Mar; 23(1):277. PubMed ID: 35321681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Evaluations of an Uncemented Acetabular Component in Total Hip Arthroplasty: Effects of Loading and Interface Conditions.
    Saviour CM; Banerjee Chowdhury J; Gupta S
    J Biomech Eng; 2023 Feb; 145(2):. PubMed ID: 36149021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary stability of a cementless acetabular cup in a cohort of patient-specific finite element models.
    O'Rourke D; Al-Dirini RM; Taylor M
    J Orthop Res; 2018 Mar; 36(3):1012-1023. PubMed ID: 28833500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Finite element analysis of artificial ankle elastic improved inserts].
    Xu Z; Li Y; Zou G; Jin Y; Rao J; Tian S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2023 Nov; 37(11):1361-1369. PubMed ID: 37987045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element study on the interactive effect between the damage of the cup-bone interface and the bone strain of hip implants under various fixation conditions.
    Nguyen QM; Otsuka Y; Miyashita Y
    J Mech Behav Biomed Mater; 2023 Aug; 144():105945. PubMed ID: 37329674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain.
    Ghosh R; Pal B; Ghosh D; Gupta S
    Comput Methods Biomech Biomed Engin; 2015; 18(7):697-710. PubMed ID: 24156480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient and surgical variability in the primary stability of cementless acetabular cups: A finite element study.
    O'Rourke D; Taylor M
    J Orthop Res; 2020 Jul; 38(7):1515-1522. PubMed ID: 32086833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing initial cup stability in total hip arthroplasty.
    Amirouche F; Solitro G; Broviak S; Gonzalez M; Goldstein W; Barmada R
    Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1177-85. PubMed ID: 25266242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm.
    Mukherjee K; Gupta S
    Biomech Model Mechanobiol; 2016 Apr; 15(2):389-403. PubMed ID: 26130375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel micromotion measurement method to gain instructive insight into the acetabular bone-implant interface.
    Heilemann M; Wendler T; Münst P; Schleifenbaum S; Scholz R; Voigt C
    Med Eng Phys; 2020 Dec; 86():138-145. PubMed ID: 33261727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does preclinical analysis based on static loading underestimate post-surgery stem micromotion in THA as opposed to dynamic gait loading?
    Vio War AS; Kumar N; Chanda S
    Med Biol Eng Comput; 2023 Jun; 61(6):1473-1488. PubMed ID: 36763232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of severe acetabular bone defects with porous metal augment in total hip arthroplasty: A finite element analysis study.
    Li P; Tang H; Liu X; Chen Z; Zhang X; Zhou Y; Jin Z
    Proc Inst Mech Eng H; 2022 Feb; 236(2):179-187. PubMed ID: 34686098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.