BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36709556)

  • 21. Effects of acetabular resurfacing component material and fixation on the strain distribution in the pelvis.
    Thompson MS; Northmore-Ball MD; Tanner KE
    Proc Inst Mech Eng H; 2002; 216(4):237-45. PubMed ID: 12206520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The number of screws, bone quality, and friction coefficient affect acetabular cup stability.
    Hsu JT; Chang CH; Huang HL; Zobitz ME; Chen WP; Lai KA; An KN
    Med Eng Phys; 2007 Dec; 29(10):1089-95. PubMed ID: 17194616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions.
    Chong DY; Hansen UN; Amis AA
    J Biomech; 2010 Apr; 43(6):1074-80. PubMed ID: 20189576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computationally efficient prediction of bone-implant interface micromotion of a cementless tibial tray during gait.
    Fitzpatrick CK; Hemelaar P; Taylor M
    J Biomech; 2014 May; 47(7):1718-26. PubMed ID: 24642351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pelvic muscle and acetabular contact forces during gait.
    Pedersen DR; Brand RA; Davy DT
    J Biomech; 1997 Sep; 30(9):959-65. PubMed ID: 9302620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimized design for a novel acetabular component with three wings. A study of finite element analysis.
    Ma W; Zhang X; Wang J; Zhang Q; Chen W; Zhang Y
    J Surg Res; 2013 Jan; 179(1):78-86. PubMed ID: 22995660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Cementless socket fixation based on the "press-fit" concept in total hip joint arthroplasty].
    Morscher EW; Widmer KH; Bereiter H; Elke R; Schenk R
    Acta Chir Orthop Traumatol Cech; 2002; 69(1):8-15. PubMed ID: 11951572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The relation between micromotion and screw fixation in acetabular cup.
    Hsu JT; Lai KA; Chen Q; Zobitz ME; Huang HL; An KN; Chang CH
    Comput Methods Programs Biomed; 2006 Oct; 84(1):34-41. PubMed ID: 16971018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corroboration of coupled musculoskeletal model and finite element predictions with in vivo RSA migration of an uncemented acetabular component.
    Fallahnezhad K; Callary SA; O'Rourke D; Bahl JS; Thewlis D; Solomon LB; Taylor M
    J Orthop Res; 2024 Feb; 42(2):373-384. PubMed ID: 37526382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element study of the acetabulum in cemented hip arthroplasty investigating retention or removal of the subchondral bone plate.
    Tanner KE; Svensson I; Samuelsson F; Flivik G
    Biomed Tech (Berl); 2016 Oct; 61(5):525-536. PubMed ID: 26630687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone remodelling around cementless composite acetabular components: the effects of implant geometry and implant-bone interfacial conditions.
    Ghosh R; Gupta S
    J Mech Behav Biomed Mater; 2014 Apr; 32():257-269. PubMed ID: 24508712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups--finite element simulations and experimental tests.
    Korhonen RK; Koistinen A; Konttinen YT; Santavirta SS; Lappalainen R
    Biomed Eng Online; 2005 May; 4():32. PubMed ID: 15904521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subject specific finite element analysis of implant stability for a cementless femoral stem.
    Pettersen SH; Wik TS; Skallerud B
    Clin Biomech (Bristol, Avon); 2009 Jul; 24(6):480-7. PubMed ID: 19368993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of dynamic hip motion on the micromotion of press-fit acetabular cups in six degrees of freedom.
    Crosnier EA; Keogh PS; Miles AW
    Med Eng Phys; 2016 Aug; 38(8):717-24. PubMed ID: 27210567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method.
    Andreaus U; Colloca M
    Proc Inst Mech Eng H; 2009 Jul; 223(5):589-605. PubMed ID: 19623912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of FE micromotions and strains around a press-fit cup: introducing a new micromotion measuring technique.
    Clarke SG; Phillips AT; Bull AM
    Ann Biomed Eng; 2012 Jul; 40(7):1586-96. PubMed ID: 22350664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of novel polyethylene insert configurations on bone-implant micromotion and contact stresses in total ankle replacement prostheses: a finite element analysis.
    Xu Z; Gong X; Hu Z; Bian R; Jin Y; Li Y
    Front Bioeng Biotechnol; 2024; 12():1371851. PubMed ID: 38699432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Total hip arthroplasty using a three-dimensional porous titanium acetabular cup: an examination of micromotion using subject-specific finite element analysis.
    Miyagawa T; Matsumoto K; Komura S; Akiyama H
    BMC Musculoskelet Disord; 2021 Mar; 22(1):308. PubMed ID: 33771146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Contribution to the study of pelvic stress during weight-bearing. Role of the pubic branch and trabecular bone].
    Fabeck L; Descamps PY; Bourgois R; Dhem A
    Rev Chir Orthop Reparatrice Appar Mot; 1994; 80(3):181-7. PubMed ID: 7899636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.