BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36710248)

  • 1. Low-Dose NIR-II Preclinical Bioimaging Using Liposome-Encapsulated Cyanine Dyes.
    Gao D; Luo Z; He Y; Yang L; Hu D; Liang Y; Zheng H; Liu X; Sheng Z
    Small; 2023 Apr; 19(17):e2206544. PubMed ID: 36710248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of indocyanine green dye in polymeric micelles for NIR-II fluorescence imaging and cancer treatment.
    Yeroslavsky G; Umezawa M; Okubo K; Nigoghossian K; Thi Kim Dung D; Miyata K; Kamimura M; Soga K
    Biomater Sci; 2020 Apr; 8(8):2245-2254. PubMed ID: 32129330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly-Soluble Cyanine J-aggregates Entrapped by Liposomes for
    Miranda D; Huang H; Kang H; Zhan Y; Wang D; Zhou Y; Geng J; Kilian HI; Stiles W; Razi A; Ortega J; Xia J; Choi HS; Lovell JF
    Theranostics; 2019; 9(2):381-390. PubMed ID: 30809281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Infrared-II (NIR-II) Bioimaging
    Zhu S; Yung BC; Chandra S; Niu G; Antaris AL; Chen X
    Theranostics; 2018; 8(15):4141-4151. PubMed ID: 30128042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-photon excitation and direct emission from S
    Kumari A; Gupta S
    J Biophotonics; 2019 Jan; 12(1):e201800086. PubMed ID: 30155994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PET/NIR-II fluorescence imaging and image-guided surgery of glioblastoma using a folate receptor α-targeted dual-modal nanoprobe.
    Shi X; Xu P; Cao C; Cheng Z; Tian J; Hu Z
    Eur J Nucl Med Mol Imaging; 2022 Nov; 49(13):4325-4337. PubMed ID: 35838757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The second window ICG technique demonstrates a broad plateau period for near infrared fluorescence tumor contrast in glioblastoma.
    Zeh R; Sheikh S; Xia L; Pierce J; Newton A; Predina J; Cho S; Nasrallah M; Singhal S; Dorsey J; Lee JYK
    PLoS One; 2017; 12(7):e0182034. PubMed ID: 28738091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of indocyanine green and lipid in enhancing near-infrared fluorescence properties: the basis for near-infrared imaging in vivo.
    Kraft JC; Ho RJ
    Biochemistry; 2014 Mar; 53(8):1275-83. PubMed ID: 24512123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Biocompatible and Near-Infrared Liposome for In Vivo Ultrasound-Switchable Fluorescence Imaging.
    Liu Y; Yao T; Cai W; Yu S; Hong Y; Nguyen KT; Yuan B
    Adv Healthc Mater; 2020 Feb; 9(4):e1901457. PubMed ID: 31957243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence Imaging of Tumor-Accumulating Antibody-IR700 Conjugates Prior to Near-Infrared Photoimmunotherapy (NIR-PIT) Using a Commercially Available Camera Designed for Indocyanine Green.
    Inagaki FF; Fujimura D; Furusawa A; Okada R; Wakiyama H; Kato T; Choyke PL; Kobayashi H
    Mol Pharm; 2021 Mar; 18(3):1238-1246. PubMed ID: 33502869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small molecular interaction-based fluorescence enhancement for second near-infrared imaging.
    Zian W; Yang L; Peng W; Yifei J; Min J
    Nanomedicine (Lond); 2020 Jan; 15(2):115-129. PubMed ID: 31903846
    [No Abstract]   [Full Text] [Related]  

  • 12. Indocyanine green fluorescence in second near-infrared (NIR-II) window.
    Starosolski Z; Bhavane R; Ghaghada KB; Vasudevan SA; Kaay A; Annapragada A
    PLoS One; 2017; 12(11):e0187563. PubMed ID: 29121078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Characteristics and Tumor Imaging Capabilities of Near Infrared Dyes in Free and Nano-Encapsulated Formulations Comprised of Viral Capsids.
    Guerrero Y; Singh SP; Mai T; Murali RK; Tanikella L; Zahedi A; Kundra V; Anvari B
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19601-19611. PubMed ID: 28524652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrahepatic cholangiography in near-infrared II window with the clinically approved fluorescence agent indocyanine green: a promising imaging technology for intraoperative diagnosis.
    Wu D; Xue D; Zhou J; Wang Y; Feng Z; Xu J; Lin H; Qian J; Cai X
    Theranostics; 2020; 10(8):3636-3651. PubMed ID: 32206113
    [No Abstract]   [Full Text] [Related]  

  • 15. Promoting the Near-Infrared-II Fluorescence of Diketopyrrolopyrrole-Based Dye for In Vivo Imaging via Donor Engineering.
    Yuan T; Xia Q; Wang Z; Li X; Lin H; Mei J; Qian J; Hua J
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4478-4492. PubMed ID: 38241092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for in vivo near-infrared imaging.
    Ma Z; Wang F; Wang W; Zhong Y; Dai H
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33372162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excretable IR-820 for
    Feng Z; Yu X; Jiang M; Zhu L; Zhang Y; Yang W; Xi W; Li G; Qian J
    Theranostics; 2019; 9(19):5706-5719. PubMed ID: 31534513
    [No Abstract]   [Full Text] [Related]  

  • 18. NIR-II fluorescence imaging using indocyanine green nanoparticles.
    Bhavane R; Starosolski Z; Stupin I; Ghaghada KB; Annapragada A
    Sci Rep; 2018 Sep; 8(1):14455. PubMed ID: 30262808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of polymer-functionalized NIR fluorescent dyes--magnetic nanoparticles for bioimaging.
    Yen SK; Jańczewski D; Lakshmi JL; Dolmanan SB; Tripathy S; Ho VH; Vijayaragavan V; Hariharan A; Padmanabhan P; Bhakoo KK; Sudhaharan T; Ahmed S; Zhang Y; Tamil Selvan S
    ACS Nano; 2013 Aug; 7(8):6796-805. PubMed ID: 23869722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indocyanine green-based fluorescence imaging improved by deep learning.
    Xiong X; He L; Ma Q; Wang Y; Li K; Wang Z; Chen X; Zhu S; Zhan Y; Cao X
    J Biophotonics; 2023 Nov; 16(11):e202300066. PubMed ID: 37556710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.