These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36710281)

  • 1. Californian thistle (Cirsium arvense): endophytes and Puccinia punctiformis.
    Kentjens W; Casonato S; Kaiser C
    Pest Manag Sci; 2024 Jan; 80(1):115-121. PubMed ID: 36710281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First Report of Silybum marianum as a Host of Puccinia punctiformis.
    Berner DK; Paxson LK; Bruckart WL; Luster DG; McMahon M; Michael JL
    Plant Dis; 2002 Nov; 86(11):1271. PubMed ID: 30818481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutualistic interaction between a weevil and a rust fungus, two parasites of the weed Cirsium arvense.
    Friedli J; Bacher S
    Oecologia; 2001 Dec; 129(4):571-576. PubMed ID: 24577697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect-Transmitted Urediniospores of the Rust Puccinia punctiformis Cause Systemic Infections in Established Cirsium arvense Plants.
    Wandeler H; Bacher S
    Phytopathology; 2006 Aug; 96(8):813-8. PubMed ID: 18943745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An epidemiological study of Puccinia punctiformis (Str.) Röhl as a stepping-stone to the biological control of Cirsium arvense (L.) Scop.
    Frantzen J
    New Phytol; 1994 May; 127(1):147-154. PubMed ID: 33874395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insects as vectors of plant pathogens: mutualistic and antagonistic interactions.
    Kluth S; Kruess A; Tscharntke T
    Oecologia; 2002 Oct; 133(2):193-199. PubMed ID: 28547306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mowing strategies for controlling Cirsium arvense in a permanent pasture in New Zealand compared using a matrix model.
    Bourdôt GW; Basse B; Cripps MG
    Ecol Evol; 2016 May; 6(9):2968-77. PubMed ID: 27069591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infection by a foliar endophyte elicits novel arabidopside-based plant defence reactions in its host, Cirsium arvense.
    Hartley SE; Eschen R; Horwood JM; Gange AC; Hill EM
    New Phytol; 2015 Jan; 205(2):816-27. PubMed ID: 25266631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological variation in different populations of Aceria anthocoptes (Acari: Eriophyoidea) associated with the Canada thistle, Cirsium arvense, in Serbia.
    Magud BD; Stanisavljević LZ; Petanović RU
    Exp Appl Acarol; 2007; 42(3):173-83. PubMed ID: 17611806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of a mutualism in a multi-species context.
    Bacher S; Friedli J
    Proc Biol Sci; 2002 Jul; 269(1499):1517-22. PubMed ID: 12137583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Above- and below ground trophic interactions on creeping thistle (Cirsium arvense) in high- and low-diversity plant communities: potential for biotic resistance?
    Bezemer TM; Graça O; Rousseau P; van der Putten WH
    Plant Biol (Stuttg); 2004; 6(2):231-8. PubMed ID: 15045676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First Report of Powdery Mildew Caused by Erysiphe cichoracearum on Creeping Thistle (Cirsium arvense) in North America.
    Newcombe G; Nischwitz C
    Plant Dis; 2004 Mar; 88(3):312. PubMed ID: 30812376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The foliar endophytic fungal community composition in Cirsium arvense is affected by mycorrhizal colonization and soil nutrient content.
    Eschen R; Hunt S; Mykura C; Gange AC; Sutton BC
    Fungal Biol; 2010; 114(11-12):991-8. PubMed ID: 21036343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of Ditylenchus weischeri and Not D. dipsaci in Field Pea Harvest Samples and Cirsium arvense in the Canadian Prairies.
    Tenuta M; Madani M; Briar S; Molina O; Gulden R; Subbotin SA
    J Nematol; 2014 Dec; 46(4):376-84. PubMed ID: 25580031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 'Candidatus Phytoplasma cirsii', a novel taxon from creeping thistle [Cirsium arvense (L.) Scop].
    Šafárˇová D; Zemánek T; Válová P; Navrátil M
    Int J Syst Evol Microbiol; 2016 Apr; 66(4):1745-1753. PubMed ID: 26849880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Characterization and Phylogeny of
    Madani M; Tenuta M
    J Nematol; 2018 Sep; 50(2):163-182. PubMed ID: 30451436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High frequency of fungicide resistance-associated mutations in the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici.
    Cook NM; Chng S; Woodman TL; Warren R; Oliver RP; Saunders DG
    Pest Manag Sci; 2021 Jul; 77(7):3358-3371. PubMed ID: 33786966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant pathogens as introduced weed biological control agents: Could antagonistic fungi be important factors determining agent success or failure?
    Den Breeyen A; Lange C; Fowler SV
    Front Fungal Biol; 2022; 3():959753. PubMed ID: 37746189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant phylogeny determines host selection and acceptance of the oligophagous leaf beetle Cassida rubiginosa.
    Hettiarachchi DK; Rostás M; Sullivan JJ; Jackman S; van Koten C; Cripps MG
    Pest Manag Sci; 2023 Nov; 79(11):4694-4703. PubMed ID: 37450765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of fungal pathogens of common weed species in the vicinity of Tokat, Turkey.
    Kadioğlu I; Karamanli N; Yanar Y
    Commun Agric Appl Biol Sci; 2010; 75(2):97-105. PubMed ID: 21542473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.