These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36710643)

  • 1. Partial mimicry of the microtubule binding of tau by its membrane binding.
    MacAinsh M; Zhou HX
    Protein Sci; 2023 Mar; 32(3):e4581. PubMed ID: 36710643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-decoration of microtubules by human tau.
    Santarella RA; Skiniotis G; Goldie KN; Tittmann P; Gross H; Mandelkow EM; Mandelkow E; Hoenger A
    J Mol Biol; 2004 Jun; 339(3):539-53. PubMed ID: 15147841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-atomic model of microtubule-tau interactions.
    Kellogg EH; Hejab NMA; Poepsel S; Downing KH; DiMaio F; Nogales E
    Science; 2018 Jun; 360(6394):1242-1246. PubMed ID: 29748322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats.
    Georgieva ER; Xiao S; Borbat PP; Freed JH; Eliezer D
    Biophys J; 2014 Sep; 107(6):1441-52. PubMed ID: 25229151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tau repeat regions contain conserved histidine residues that modulate microtubule-binding in response to changes in pH.
    Charafeddine RA; Cortopassi WA; Lak P; Tan R; McKenney RJ; Jacobson MP; Barber DL; Wittmann T
    J Biol Chem; 2019 May; 294(22):8779-8790. PubMed ID: 30992364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding of the Tau Protein on Microtubules.
    Kadavath H; Jaremko M; Jaremko Ł; Biernat J; Mandelkow E; Zweckstetter M
    Angew Chem Int Ed Engl; 2015 Aug; 54(35):10347-51. PubMed ID: 26094605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Flexibility of Tau in Its Interaction with Microtubules as Viewed by Site-Directed Spin Labeling EPR Spectroscopy.
    Martinho M; Allegro D; Etienne E; Lohberger C; Bonucci A; Belle V; Barbier P
    Methods Mol Biol; 2024; 2754():55-75. PubMed ID: 38512660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Binding Mode of a Tau Peptide with Tubulin.
    Kadavath H; Cabrales Fontela Y; Jaremko M; Jaremko Ł; Overkamp K; Biernat J; Mandelkow E; Zweckstetter M
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3246-3250. PubMed ID: 29314492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tau domains, phosphorylation, and interactions with microtubules.
    Mandelkow EM; Biernat J; Drewes G; Gustke N; Trinczek B; Mandelkow E
    Neurobiol Aging; 1995; 16(3):355-62; discussion 362-3. PubMed ID: 7566345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules.
    Trinczek B; Biernat J; Baumann K; Mandelkow EM; Mandelkow E
    Mol Biol Cell; 1995 Dec; 6(12):1887-902. PubMed ID: 8590813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The "jaws" of the tau-microtubule interaction.
    Mukrasch MD; von Bergen M; Biernat J; Fischer D; Griesinger C; Mandelkow E; Zweckstetter M
    J Biol Chem; 2007 Apr; 282(16):12230-9. PubMed ID: 17307736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure challenges in the multivalency of Tau-microtubule interactions.
    Nogales E; Kellogg E
    Cytoskeleton (Hoboken); 2024 Jan; 81(1):53-56. PubMed ID: 37702417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Functions of Microtubule Associated Proteins Tau and MAP2c: Similarities and Differences.
    Melková K; Zapletal V; Narasimhan S; Jansen S; Hritz J; Škrabana R; Zweckstetter M; Ringkjøbing Jensen M; Blackledge M; Žídek L
    Biomolecules; 2019 Mar; 9(3):. PubMed ID: 30884818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tau protein binding forms a 1 nm thick layer along protofilaments without affecting the radial elasticity of microtubules.
    Schaap IA; Hoffmann B; Carrasco C; Merkel R; Schmidt CF
    J Struct Biol; 2007 Jun; 158(3):282-92. PubMed ID: 17329123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing IDP Interactions with Membranes by Fluorescence Spectroscopy.
    Acosta D; Das T; Eliezer D
    Methods Mol Biol; 2020; 2141():555-567. PubMed ID: 32696377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule-binding core of the tau protein.
    El Mammeri N; Dregni AJ; Duan P; Wang HK; Hong M
    Sci Adv; 2022 Jul; 8(29):eabo4459. PubMed ID: 35857846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Characterization of Tau in Fuzzy Tau:Tubulin Complexes.
    Fung HYJ; McKibben KM; Ramirez J; Gupta K; Rhoades E
    Structure; 2020 Mar; 28(3):378-384.e4. PubMed ID: 31995742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro 0N4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments.
    Dregni AJ; Mandala VS; Wu H; Elkins MR; Wang HK; Hung I; DeGrado WF; Hong M
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16357-16366. PubMed ID: 31358628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles.
    Prezel E; Elie A; Delaroche J; Stoppin-Mellet V; Bosc C; Serre L; Fourest-Lieuvin A; Andrieux A; Vantard M; Arnal I
    Mol Biol Cell; 2018 Jan; 29(2):154-165. PubMed ID: 29167379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau.
    Ambadipudi S; Biernat J; Riedel D; Mandelkow E; Zweckstetter M
    Nat Commun; 2017 Aug; 8(1):275. PubMed ID: 28819146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.