BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36710652)

  • 41. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa.
    Cheng F; Wu J; Fang L; Sun S; Liu B; Lin K; Bonnema G; Wang X
    PLoS One; 2012; 7(5):e36442. PubMed ID: 22567157
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa.
    Jiang C; Ramchiary N; Ma Y; Jin M; Feng J; Li R; Wang H; Long Y; Choi SR; Zhang C; Cowling WA; Park BS; Lim YP; Meng J
    Theor Appl Genet; 2011 Oct; 123(6):927-41. PubMed ID: 21761162
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-Wide Identification of GYF-Domain Encoding Genes in Three
    Zhang X; Qin L; Lu J; Xia Y; Tang X; Lu X; Xia S
    Genes (Basel); 2023 Jan; 14(1):. PubMed ID: 36672966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gene expression profiling reveals transcription factor networks and subgenome bias during Brassica napus seed development.
    Khan D; Ziegler DJ; Kalichuk JL; Hoi V; Huynh N; Hajihassani A; Parkin IAP; Robinson SJ; Belmonte MF
    Plant J; 2022 Feb; 109(3):477-489. PubMed ID: 34786793
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-Wide Identification, Evolution, and Comparative Analysis of B-Box Genes in
    Singh S; Chhapekar SS; Ma Y; Rameneni JJ; Oh SH; Kim J; Lim YP; Choi SR
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638707
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Whole-genome sequence of synthetically derived Brassica napus inbred cultivar Da-Ae.
    Davis JT; Li R; Kim S; Michelmore R; Kim S; Maloof JN
    G3 (Bethesda); 2023 Apr; 13(4):. PubMed ID: 36724115
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NBS-Encoding Genes in
    Fu Y; Zhang Y; Mason AS; Lin B; Zhang D; Yu H; Fu D
    Front Plant Sci; 2019; 10():26. PubMed ID: 30761170
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel flowering time variation in the resynthesized polyploid Brassica napus.
    Schranz ME; Osborn TC
    J Hered; 2000; 91(3):242-6. PubMed ID: 10833052
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Melatonin elevated Sclerotinia sclerotiorum resistance via modulation of ATP and glucosinolate biosynthesis in Brassica rapa ssp. pekinensis.
    Teng Z; Yu Y; Zhu Z; Hong SB; Yang B; Zang Y
    J Proteomics; 2021 Jul; 243():104264. PubMed ID: 33992838
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L.
    He X; Kang Y; Li W; Liu W; Xie P; Liao L; Huang L; Yao M; Qian L; Liu Z; Guan C; Guan M; Hua W
    BMC Genomics; 2020 Oct; 21(1):736. PubMed ID: 33092535
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus.
    Li Y; Wang X; Zhang H; Wang S; Ye X; Shi L; Xu F; Ding G
    PLoS One; 2019; 14(7):e0220374. PubMed ID: 31344115
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Asymmetric epigenetic modification and homoeolog expression bias in the establishment and evolution of allopolyploid Brassica napus.
    Li M; Sun W; Wang F; Wu X; Wang J
    New Phytol; 2021 Oct; 232(2):898-913. PubMed ID: 34265096
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global gene expression perturbations in rapeseed due to the introduction of alien radish chromosomes.
    Shao Y; Pan Q; Zhang D; Kang L; Li Z
    J Genet; 2021; 100():. PubMed ID: 34187972
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus.
    Seifbarghi S; Borhan MH; Wei Y; Coutu C; Robinson SJ; Hegedus DD
    BMC Genomics; 2017 Mar; 18(1):266. PubMed ID: 28356071
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytonuclear interactions remain stable during allopolyploid evolution despite repeated whole-genome duplications in Brassica.
    Ferreira de Carvalho J; Lucas J; Deniot G; Falentin C; Filangi O; Gilet M; Legeai F; Lode M; Morice J; Trotoux G; Aury JM; Barbe V; Keller J; Snowdon R; He Z; Denoeud F; Wincker P; Bancroft I; Chèvre AM; Rousseau-Gueutin M
    Plant J; 2019 May; 98(3):434-447. PubMed ID: 30604905
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing.
    Lin L; Fan J; Li P; Liu D; Ren S; Lin K; Fang Y; Lin C; Wang Y; Wu J
    J Exp Bot; 2022 Nov; 73(19):6663-6677. PubMed ID: 35927220
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The poor lonesome A subgenome of Brassica napus var. Darmor (AACC) may not survive without its mate.
    Pelé A; Trotoux G; Eber F; Lodé M; Gilet M; Deniot G; Falentin C; Nègre S; Morice J; Rousseau-Gueutin M; Chèvre AM
    New Phytol; 2017 Mar; 213(4):1886-1897. PubMed ID: 27575298
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Does one subgenome become dominant in the formation and evolution of a polyploid?
    Liu C; Wang YG
    Ann Bot; 2023 Feb; 131(1):11-16. PubMed ID: 35291007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.