BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 3671089)

  • 1. Synthesis and physical characterization of DNA fragments containing N4-methylcytosine and 5-methylcytosine.
    Butkus V; Klimasauskas S; Petrauskiene L; Maneliene Z; Janulaitis A; Minchenkova LE; Schyolkina AK
    Nucleic Acids Res; 1987 Oct; 15(20):8467-78. PubMed ID: 3671089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of N4-methylcytosine and 5-methylcytosine on the stability of the DNA helix].
    Iurgaĭtis AP; Butkus VV; Klimashauskas SI; Ianulaĭtis AA
    Bioorg Khim; 1988 Feb; 14(2):158-65. PubMed ID: 3382434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [B-A and B-Z transitions in deoxyoligoduplexes containing 4- and 5- methylcytosine].
    Shchelkina AK; Minchenkova LE; Ivanov VI; Butkus VV; Ianulaĭtis AA
    Mol Biol (Mosk); 1988; 22(6):1562-70. PubMed ID: 3252151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of decadeoxyribonucleotides containing N6-methyladenine, N4-methylcytosine, and 5-methylcytosine: recognition and cleavage by restriction endonucleases (nucleosides and nucleotides part 74).
    Ono A; Ueda T
    Nucleic Acids Res; 1987 Jan; 15(1):219-32. PubMed ID: 3029671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleavage of methylated CCCGGG sequences containing either N4-methylcytosine or 5-methylcytosine with MspI, HpaII, SmaI, XmaI and Cfr9I restriction endonucleases.
    Butkus V; Petrauskiene L; Maneliene Z; Klimasauskas S; Laucys V; Janulaitis A
    Nucleic Acids Res; 1987 Sep; 15(17):7091-102. PubMed ID: 2821492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specifically alkylated DNA fragments. Synthesis and physical characterization of d[CGC(O6Me)GCG] and d[CGT(O6Me)GCG].
    Kuzmich S; Marky LA; Jones RA
    Nucleic Acids Res; 1983 May; 11(10):3393-403. PubMed ID: 6856460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and physical characterization of the self-complementary, alternating pyrimidine/purine hexanucleotide d[CGTACG].
    Kuzmich S; Marky LA; Jones RA
    Nucleic Acids Res; 1982 Oct; 10(20):6265-71. PubMed ID: 7177847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytosine methylation can induce local distortions in the structure of duplex DNA.
    Hodges-Garcia Y; Hagerman PJ
    Biochemistry; 1992 Aug; 31(33):7595-9. PubMed ID: 1510946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of 4-triazolopyrimidinone nucleotide and its application in synthesis of 5-methylcytosine-containing oligodeoxyribonucleotides.
    Sung WL
    Nucleic Acids Res; 1981 Nov; 9(22):6139-51. PubMed ID: 7312633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides.
    Xodo LE; Alunni-Fabbroni M; Manzini G
    J Biomol Struct Dyn; 1994 Feb; 11(4):703-20. PubMed ID: 8204209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The B----Z transition in two synthetic oligonucleotides: d(C-2-amino-ACGTG) and d(m5CGCAm5CGTGCG) studied by IR, NMR and CD spectroscopies.
    Taboury JA; Adam S; Taillandier E; Neumann JM; Tran-Dinh S; Huynh-Dinh T; Langlois d'Estaintot B; Conti M; Igolen J
    Nucleic Acids Res; 1984 Aug; 12(15):6291-305. PubMed ID: 6332307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability of oligodeoxyribonucleotide duplexes containing degenerate bases.
    Anand NN; Brown DM; Salisbury SA
    Nucleic Acids Res; 1987 Oct; 15(20):8167-76. PubMed ID: 3671080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structure of (m5 dC-dG)3: the role of the methyl group on 5-methyl cytosine in stabilizing Z-DNA.
    Fujii S; Wang AH; van der Marel G; van Boom JH; Rich A
    Nucleic Acids Res; 1982 Dec; 10(23):7879-92. PubMed ID: 7155900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequencing 5-methylcytosine residues by the bisulphite method.
    Grigg GW
    DNA Seq; 1996; 6(4):189-98. PubMed ID: 8912921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the structural and dynamic effects of 5-methylcytosine and 5-chlorocytosine in a CpG dinucleotide sequence.
    Theruvathu JA; Yin YW; Pettitt BM; Sowers LC
    Biochemistry; 2013 Nov; 52(47):8590-8. PubMed ID: 24147911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(pyrimidine) . poly(purine) synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH.
    Lee JS; Woodsworth ML; Latimer LJ; Morgan AR
    Nucleic Acids Res; 1984 Aug; 12(16):6603-14. PubMed ID: 6473110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR and CD studies on an oligonucleotide containing N4-methylcytosine.
    Fazakerley GV; Kraszewski A; Téoule R; Guschlbauer W
    Nucleic Acids Res; 1987 Mar; 15(5):2191-201. PubMed ID: 3562225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of sequence-dependent cytosine protonation and methylation on DNA triplex stability.
    Leitner D; Schröder W; Weisz K
    Biochemistry; 2000 May; 39(19):5886-92. PubMed ID: 10801340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of the purine 2-amino group on DNA conformation and stability. Synthesis and conformational analysis of d[T(2-aminoA)]3.
    Gaffney BL; Marky LA; Jones RA
    Nucleic Acids Res; 1982 Jul; 10(14):4351-61. PubMed ID: 7122239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite- sequencing.
    Yu M; Ji L; Neumann DA; Chung DH; Groom J; Westpheling J; He C; Schmitz RJ
    Nucleic Acids Res; 2015 Dec; 43(21):e148. PubMed ID: 26184871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.