These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 36710913)
1. Dataset of process-structure-property feature relationship for laser powder bed fusion additive manufactured Ti-6Al-4V material. Luo Q; Yin L; Simpson TW; Beese AM Data Brief; 2023 Feb; 46():108911. PubMed ID: 36710913 [TBL] [Abstract][Full Text] [Related]
2. Dataset of process-structure-property feature relationships for AlSi10Mg material fabricated using laser powder bed fusion additive manufacturing. Luo Q; Huang N; Fu T; Wang J; Bartles DL; Simpson TW; Beese AM Data Brief; 2024 Apr; 53():110130. PubMed ID: 38348317 [TBL] [Abstract][Full Text] [Related]
3. Data related to architectural bone parameters and the relationship to Ti lattice design for powder bed fusion additive manufacturing. McGregor M; Patel S; McLachlin S; Vlasea M Data Brief; 2021 Dec; 39():107633. PubMed ID: 34917699 [TBL] [Abstract][Full Text] [Related]
4. Effects of Process Parameters and Process Defects on the Flexural Fatigue Life of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion. Ramirez B; Banuelos C; De La Cruz A; Nabil ST; Arrieta E; Murr LE; Wicker RB; Medina F Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336289 [TBL] [Abstract][Full Text] [Related]
5. Understanding the effects of PBF process parameter interplay on Ti-6Al-4V surface properties. Majumdar T; Bazin T; Massahud Carvalho Ribeiro E; Frith JE; Birbilis N PLoS One; 2019; 14(8):e0221198. PubMed ID: 31465449 [TBL] [Abstract][Full Text] [Related]
6. Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment. Wegner N; Kotzem D; Wessarges Y; Emminghaus N; Hoff C; Tenkamp J; Hermsdorf J; Overmeyer L; Walther F Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31500239 [TBL] [Abstract][Full Text] [Related]
7. Thermophysical Properties of Laser Powder Bed Fused Ti-6Al-4V and AlSi10Mg Alloys Made with Varying Laser Parameters. Akwaboa S; Zeng C; Amoafo-Yeboah N; Ibekwe S; Mensah P Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512194 [TBL] [Abstract][Full Text] [Related]
8. Effect of Precrack Configuration and Lack-of-Fusion on the Elastic-Plastic Fracture Toughness of Additively Manufactured Ti-6Al-4V parts. Lucon E; Benzing J; Hrabe N Mater Perform Charact; 2020; 9(5):. PubMed ID: 33614956 [TBL] [Abstract][Full Text] [Related]
9. Contrasting the Role of Pores on the Stress State Dependent Fracture Behavior of Additively Manufactured Low and High Ductility Metals. Wilson-Heid AE; Furton ET; Beese AM Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209031 [TBL] [Abstract][Full Text] [Related]
10. 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V. Barui S; Panda AK; Naskar S; Kuppuraj R; Basu S; Basu B Biomaterials; 2019 Aug; 213():119212. PubMed ID: 31152931 [TBL] [Abstract][Full Text] [Related]
11. The Effects of Feature Sizes in Selectively Laser Melted Ti-6Al-4V Parts on the Validity of Optimised Process Parameters. Phutela C; Aboulkhair NT; Tuck CJ; Ashcroft I Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31887981 [TBL] [Abstract][Full Text] [Related]
12. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Yan C; Hao L; Hussein A; Young P J Mech Behav Biomed Mater; 2015 Nov; 51():61-73. PubMed ID: 26210549 [TBL] [Abstract][Full Text] [Related]
13. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681 [TBL] [Abstract][Full Text] [Related]
14. Influence of Powder Bed Temperature on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion. Xing LL; Zhang WJ; Zhao CC; Gao WQ; Shen ZJ; Liu W Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33924888 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Composite Powder Feedstock from Powder Bed Fusion Additive Manufacturing Perspective. Fereiduni E; Ghasemi A; Elbestawi M Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703412 [TBL] [Abstract][Full Text] [Related]
16. Mechanical properties and in vitro cytocompatibility of dense and porous Ti-6Al-4V ELI manufactured by selective laser melting technology for biomedical applications. Suresh S; Sun CN; Tekumalla S; Rosa V; Ling Nai SM; Wong RCW J Mech Behav Biomed Mater; 2021 Nov; 123():104712. PubMed ID: 34365098 [TBL] [Abstract][Full Text] [Related]
17. Densification, Tailored Microstructure, and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Alloy via Annealing Heat Treatment. Wang D; Wang H; Chen X; Liu Y; Lu D; Liu X; Han C Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208455 [TBL] [Abstract][Full Text] [Related]
18. Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion. Varela J; Arrieta E; Paliwal M; Marucci M; Sandoval JH; Gonzalez JA; McWilliams B; Murr LE; Wicker RB; Medina F Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34199584 [TBL] [Abstract][Full Text] [Related]
19. Additively manufactured Ti-6Al-4V thin struts via laser powder bed fusion: Effect of building orientation on geometrical accuracy and mechanical properties. Murchio S; Dallago M; Zanini F; Carmignato S; Zappini G; Berto F; Maniglio D; Benedetti M J Mech Behav Biomed Mater; 2021 Jul; 119():104495. PubMed ID: 33831659 [TBL] [Abstract][Full Text] [Related]
20. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy. Kabir MR; Richter H Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]