These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 36711019)
1. "iPSC-derived liver organoids and inherited bleeding disorders: Potential and future perspectives". Roman G; Stavik B; Lauritzen KH; Sandset PM; Harrison SP; Sullivan GJ; Chollet ME Front Physiol; 2023; 14():1094249. PubMed ID: 36711019 [TBL] [Abstract][Full Text] [Related]
2. CRISPR-targeted genome editing of human induced pluripotent stem cell-derived hepatocytes for the treatment of Wilson's disease. Wei R; Yang J; Cheng CW; Ho WI; Li N; Hu Y; Hong X; Fu J; Yang B; Liu Y; Jiang L; Lai WH; Au KW; Tsang WL; Tse YL; Ng KM; Esteban MA; Tse HF JHEP Rep; 2022 Jan; 4(1):100389. PubMed ID: 34877514 [TBL] [Abstract][Full Text] [Related]
3. Modeling pancreatic pathophysiology using genome editing of adult stem cell-derived and induced pluripotent stem cell (iPSC)-derived organoids. Hirshorn ST; Steele N; Zavros Y Am J Physiol Gastrointest Liver Physiol; 2021 Jun; 320(6):G1142-G1150. PubMed ID: 33759566 [TBL] [Abstract][Full Text] [Related]
4. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. Lee CT; Bendriem RM; Wu WW; Shen RF J Biomed Sci; 2017 Aug; 24(1):59. PubMed ID: 28822354 [TBL] [Abstract][Full Text] [Related]
5. Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells. Garreta E; González F; Montserrat N Nephron; 2018; 138(1):48-59. PubMed ID: 28988229 [TBL] [Abstract][Full Text] [Related]
6. Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells. Ho BX; Pek NMQ; Soh BS Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561796 [TBL] [Abstract][Full Text] [Related]
7. Combining Kidney Organoids and Genome Editing Technologies for a Better Understanding of Physiopathological Mechanisms of Renal Diseases: State of the Art. Steichen C; Giraud S; Hauet T Front Med (Lausanne); 2020; 7():10. PubMed ID: 32118002 [TBL] [Abstract][Full Text] [Related]
8. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Muhtaseb AW; Duan J Schizophr Res; 2022 Apr; ():. PubMed ID: 35459617 [TBL] [Abstract][Full Text] [Related]
9. CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Hendriks D; Clevers H; Artegiani B Cell Stem Cell; 2020 Nov; 27(5):705-731. PubMed ID: 33157047 [TBL] [Abstract][Full Text] [Related]
10. Patient-Induced Pluripotent Stem Cell-Derived Hepatostellate Organoids Establish a Basis for Liver Pathologies in Telomeropathies. Choi YJ; Kim MS; Rhoades JH; Johnson NM; Berry CT; Root S; Chen Q; Tian Y; Fernandez RJ; Cramer Z; Adams-Tzivelekidis S; Li N; Johnson FB; Lengner CJ Cell Mol Gastroenterol Hepatol; 2023; 16(3):451-472. PubMed ID: 37302654 [TBL] [Abstract][Full Text] [Related]
11. iPSC-Derived Organoids as Therapeutic Models in Regenerative Medicine and Oncology. Turhan AG; Hwang JW; Chaker D; Tasteyre A; Latsis T; Griscelli F; Desterke C; Bennaceur-Griscelli A Front Med (Lausanne); 2021; 8():728543. PubMed ID: 34722569 [TBL] [Abstract][Full Text] [Related]
12. Correction of Hirschsprung-Associated Mutations in Human Induced Pluripotent Stem Cells Via Clustered Regularly Interspaced Short Palindromic Repeats/Cas9, Restores Neural Crest Cell Function. Lai FP; Lau ST; Wong JK; Gui H; Wang RX; Zhou T; Lai WH; Tse HF; Tam PK; Garcia-Barcelo MM; Ngan ES Gastroenterology; 2017 Jul; 153(1):139-153.e8. PubMed ID: 28342760 [TBL] [Abstract][Full Text] [Related]
13. Applications of kidney organoids derived from human pluripotent stem cells. Kim YK; Nam SA; Yang CW Korean J Intern Med; 2018 Jul; 33(4):649-659. PubMed ID: 29961307 [TBL] [Abstract][Full Text] [Related]
14. CRISPR/Cas 9 genome editing and its applications in organoids. Driehuis E; Clevers H Am J Physiol Gastrointest Liver Physiol; 2017 Mar; 312(3):G257-G265. PubMed ID: 28126704 [TBL] [Abstract][Full Text] [Related]
15. In vitro models for ASD-patient-derived iPSCs and cerebral organoids. Hohmann SS; Ilieva M; Michel TM Prog Mol Biol Transl Sci; 2020; 173():355-375. PubMed ID: 32711817 [TBL] [Abstract][Full Text] [Related]
16. Modeling of Autism Using Organoid Technology. Choi H; Song J; Park G; Kim J Mol Neurobiol; 2017 Dec; 54(10):7789-7795. PubMed ID: 27844287 [TBL] [Abstract][Full Text] [Related]
17. Organoids for the Study of Liver Cancer. Wang H; Calvisi DF; Chen X Semin Liver Dis; 2021 Jan; 41(1):19-27. PubMed ID: 33764482 [TBL] [Abstract][Full Text] [Related]
18. Advances in Central Nervous System Organoids: A Focus on Organoid-Based Models for Motor Neuron Disease. Vieira de Sá R; Cañizares Luna M; Pasterkamp RJ Tissue Eng Part C Methods; 2021 Mar; 27(3):213-224. PubMed ID: 33446055 [TBL] [Abstract][Full Text] [Related]
19. Central nervous system organoids for modeling neurodegenerative diseases. Hou PS; Kuo HC IUBMB Life; 2022 Aug; 74(8):812-825. PubMed ID: 35102668 [TBL] [Abstract][Full Text] [Related]
20. Therapeutic correction of hemophilia A using 2D endothelial cells and multicellular 3D organoids derived from CRISPR/Cas9-engineered patient iPSCs. Son JS; Park CY; Lee G; Park JY; Kim HJ; Kim G; Chi KY; Woo DH; Han C; Kim SK; Park HJ; Kim DW; Kim JH Biomaterials; 2022 Apr; 283():121429. PubMed ID: 35217482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]