These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36711165)

  • 1. Hierarchical clustering optimizes the tradeoff between compositionality and expressivity of task structures for flexible reinforcement learning.
    Liu RG; Frank MJ
    Artif Intell; 2022 Nov; 312():. PubMed ID: 36711165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalizing to generalize: Humans flexibly switch between compositional and conjunctive structures during reinforcement learning.
    Franklin NT; Frank MJ
    PLoS Comput Biol; 2020 Apr; 16(4):e1007720. PubMed ID: 32282795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context-Based Meta-Reinforcement Learning with Bayesian Nonparametric Models.
    Bing Z; Yun Y; Huang K; Knoll A
    IEEE Trans Pattern Anal Mach Intell; 2024 Apr; PP():. PubMed ID: 38593010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compositional RL Agents That Follow Language Commands in Temporal Logic.
    Kuo YL; Katz B; Barbu A
    Front Robot AI; 2021; 8():689550. PubMed ID: 34350213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compositional clustering in task structure learning.
    Franklin NT; Frank MJ
    PLoS Comput Biol; 2018 Apr; 14(4):e1006116. PubMed ID: 29672581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact Goal Representation Learning via Information Bottleneck in Goal-Conditioned Reinforcement Learning.
    Zou Q; Suzuki E
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38190683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging Predictions of Task-Related Latents for Interactive Visual Navigation.
    Shen J; Yuan L; Lu Y; Lyu S
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38039173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI.
    Badre D; Frank MJ
    Cereb Cortex; 2012 Mar; 22(3):527-36. PubMed ID: 21693491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Dirichlet Process Mixture of Robust Task Models for Scalable Lifelong Reinforcement Learning.
    Wang Z; Chen C; Dong D
    IEEE Trans Cybern; 2023 Dec; 53(12):7509-7520. PubMed ID: 35580095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning.
    Blakeman S; Mareschal D
    Neural Netw; 2022 Jun; 150():408-421. PubMed ID: 35358888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-task reinforcement learning in humans.
    Tomov MS; Schulz E; Gershman SJ
    Nat Hum Behav; 2021 Jun; 5(6):764-773. PubMed ID: 33510391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to Predict Consequences as a Method of Knowledge Transfer in Reinforcement Learning.
    Chalmers E; Contreras EB; Robertson B; Luczak A; Gruber A
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2259-2270. PubMed ID: 28436902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement Learning Control With Knowledge Shaping.
    Gao X; Si J; Huang H
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):3156-3167. PubMed ID: 37027592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational evidence for hierarchically structured reinforcement learning in humans.
    Eckstein MK; Collins AGE
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29381-29389. PubMed ID: 33229518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kernel Temporal Difference based Reinforcement Learning for Brain Machine Interfaces
    Shen X; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6721-6724. PubMed ID: 34892650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering Intrinsic Subgoals for Vision-and-Language Navigation via Hierarchical Reinforcement Learning.
    Wang J; Wang T; Xu L; He Z; Sun C
    IEEE Trans Neural Netw Learn Syst; 2024 May; PP():. PubMed ID: 38748524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement learning algorithms for robotic navigation in dynamic environments.
    Yen GG; Hickey TW
    ISA Trans; 2004 Apr; 43(2):217-30. PubMed ID: 15098582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.