These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36711500)

  • 1. Natural statistics of human head orientation constrain models of vestibular processing.
    Sinnott C; Hausamann PA; MacNeilage PR
    Res Sq; 2023 Jan; ():. PubMed ID: 36711500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural statistics of human head orientation constrain models of vestibular processing.
    Sinnott CB; Hausamann PA; MacNeilage PR
    Sci Rep; 2023 Apr; 13(1):5882. PubMed ID: 37041176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual signals of head rotation induce gravity-dependent inferences of linear acceleration.
    Khosravi-Hashemi N; Forbes PA; Dakin CJ; Blouin JS
    J Physiol; 2019 Nov; 597(21):5231-5246. PubMed ID: 31483492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1994 Mar; 71(3):1222-49. PubMed ID: 8201414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perception of the dynamic visual vertical during sinusoidal linear motion.
    Pomante A; Selen LPJ; Medendorp WP
    J Neurophysiol; 2017 Oct; 118(4):2499-2506. PubMed ID: 28814635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates.
    MacNeilage PR; Banks MS; DeAngelis GC; Angelaki DE
    J Neurosci; 2010 Jul; 30(27):9084-94. PubMed ID: 20610742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Body orientation contributes to modelling the effects of gravity for target interception in humans.
    La Scaleia B; Lacquaniti F; Zago M
    J Physiol; 2019 Apr; 597(7):2021-2043. PubMed ID: 30644996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roll tilt psychophysics in rhesus monkeys during vestibular and visual stimulation.
    Lewis RF; Haburcakova C; Merfeld DM
    J Neurophysiol; 2008 Jul; 100(1):140-53. PubMed ID: 18417632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight.
    Moore ST; Cohen B; Raphan T; Berthoz A; Clément G
    Exp Brain Res; 2005 Jan; 160(1):38-59. PubMed ID: 15289967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional significance of velocity storage and its dependence on gravity.
    Laurens J; Angelaki DE
    Exp Brain Res; 2011 May; 210(3-4):407-22. PubMed ID: 21293850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of the roll angular vestibuloocular reflex (aVOR) on gravity.
    Yakushin SB; Xiang Y; Cohen B; Raphan T
    J Neurophysiol; 2009 Nov; 102(5):2616-26. PubMed ID: 19692515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of head pitch and roll orientations on magnetically induced vertigo.
    Mian OS; Li Y; Antunes A; Glover PM; Day BL
    J Physiol; 2016 Feb; 594(4):1051-67. PubMed ID: 26614577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian model of the disambiguation of gravitoinertial force by visual cues.
    MacNeilage PR; Banks MS; Berger DR; Bülthoff HH
    Exp Brain Res; 2007 May; 179(2):263-90. PubMed ID: 17136526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects.
    Allum JH; Oude Nijhuis LB; Carpenter MG
    Exp Brain Res; 2008 Jan; 184(3):391-410. PubMed ID: 17849108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural processing of gravito-inertial cues in humans. IV. Influence of visual rotational cues during roll optokinetic stimuli.
    Zupan LH; Merfeld DM
    J Neurophysiol; 2003 Jan; 89(1):390-400. PubMed ID: 12522188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural statistics of head roll: implications for Bayesian inference in spatial orientation.
    Willemsen SCMJ; Oostwoud Wijdenes L; van Beers RJ; Koppen M; Medendorp WP
    J Neurophysiol; 2022 Dec; 128(6):1409-1420. PubMed ID: 36321734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three dimensional vestibular ocular reflex testing using a six degrees of freedom motion platform.
    Dits J; Houben MM; van der Steen J
    J Vis Exp; 2013 May; (75):e4144. PubMed ID: 23728158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Implanted Vestibular Prosthesis Improves Spatial Orientation in Animals with Severe Vestibular Damage.
    Karmali F; Haburcakova C; Gong W; Della Santina CC; Merfeld DM; Lewis RF
    J Neurosci; 2021 Apr; 41(17):3879-3888. PubMed ID: 33731447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2405-24. PubMed ID: 8793753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canal-otolith interactions after off-vertical axis rotations. II. Spatiotemporal properties of roll and pitch postrotatory vestibuloocular reflexes.
    Hess BJ; Jaggi-Schwarz K; Misslisch H
    J Neurophysiol; 2005 Mar; 93(3):1633-46. PubMed ID: 15525812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.