These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36711682)

  • 1. Post-Ischemic Reorganization of Sensory Responses in Cerebral Cortex.
    Hayley P; Tuchek C; Dalla S; Borrell J; Murphy MD; Nudo RJ; Guggenmos DJ
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-ischemic reorganization of sensory responses in cerebral cortex.
    Hayley P; Tuchek C; Dalla S; Borrell J; Murphy MD; Nudo RJ; Guggenmos DJ
    Front Neurosci; 2023; 17():1151309. PubMed ID: 37332854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interhemispheric modulations of motor outputs by the rostral and caudal forelimb areas in rats.
    Touvykine B; Elgbeili G; Quessy S; Dancause N
    J Neurophysiol; 2020 Apr; 123(4):1355-1368. PubMed ID: 32130080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.
    Kunori N; Takashima I
    Eur J Neurosci; 2016 Dec; 44(11):2925-2934. PubMed ID: 27717064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery.
    Nishibe M; Barbay S; Guggenmos D; Nudo RJ
    J Neurotrauma; 2010 Dec; 27(12):2221-32. PubMed ID: 20873958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between rostral and caudal cortical motor areas in the rat.
    Deffeyes JE; Touvykine B; Quessy S; Dancause N
    J Neurophysiol; 2015 Jun; 113(10):3893-904. PubMed ID: 25855697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the connectional properties of the two forelimb areas of the rat sensorimotor cortex: support for the presence of a premotor or supplementary motor cortical area.
    Rouiller EM; Moret V; Liang F
    Somatosens Mot Res; 1993; 10(3):269-89. PubMed ID: 8237215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Lesion Size on the Organization of the Ipsilesional and Contralesional Motor Cortex.
    Touvykine B; Mansoori BK; Jean-Charles L; Deffeyes J; Quessy S; Dancause N
    Neurorehabil Neural Repair; 2016 Mar; 30(3):280-92. PubMed ID: 25967757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas.
    Hira R; Ohkubo F; Tanaka YR; Masamizu Y; Augustine GJ; Kasai H; Matsuzaki M
    Front Neural Circuits; 2013; 7():55. PubMed ID: 23554588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticocortical connections of the rostral forelimb area in rats: a quantitative tract-tracing study.
    Urban Iii ET; Hudson HM; Li Y; Nishibe M; Barbay S; Guggenmos DJ; Nudo RJ
    Cereb Cortex; 2024 Jan; 34(2):. PubMed ID: 38265300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of closed-loop intracortical stimulation on neural activity in brain-injured, anesthetized animals.
    Carè M; Averna A; Barban F; Semprini M; De Michieli L; Nudo RJ; Guggenmos DJ; Chiappalone M
    Bioelectron Med; 2022 Feb; 8(1):4. PubMed ID: 35220964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of sustained electromyographic activity by single intracortical microstimuli: comparison of two forelimb motor cortical areas of the rat.
    Liang F; Rouiller EM; Wiesendanger M
    Somatosens Mot Res; 1993; 10(1):51-61. PubMed ID: 8484296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke.
    Okabe N; Shiromoto T; Himi N; Lu F; Maruyama-Nakamura E; Narita K; Iwachidou N; Yagita Y; Miyamoto O
    Neuroscience; 2016 Dec; 339():338-362. PubMed ID: 27725217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease.
    Karl JM; Sacrey LA; McDonald RJ; Whishaw IQ
    Brain Res Bull; 2008 Sep; 77(1):42-8. PubMed ID: 18639744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analyses of thalamic and cortical origins of neurons projecting to the rostral and caudal forelimb motor areas in the cerebral cortex of rats.
    Wang Y; Kurata K
    Brain Res; 1998 Jan; 781(1-2):137-47. PubMed ID: 9507093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and plasticity of complex movement representations.
    Singleton AC; Brown AR; Teskey GC
    J Neurophysiol; 2021 Feb; 125(2):628-637. PubMed ID: 33471611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated technology for evaluation of brain function and neural plasticity.
    Rossini PM; Dal Forno G
    Phys Med Rehabil Clin N Am; 2004 Feb; 15(1):263-306. PubMed ID: 15029909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force Decoding of Caudal Forelimb Area and Rostral Forelimb Area in Chronic Stroke Rats.
    Gao H; Sun M; Li M; Wang C; Yu C; Wang Y; Xu K
    IEEE Trans Biomed Eng; 2021 Oct; 68(10):3078-3086. PubMed ID: 33661731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor representations in the intact hemisphere of the rat are reduced after repetitive training of the impaired forelimb.
    Barbay S; Guggenmos DJ; Nishibe M; Nudo RJ
    Neurorehabil Neural Repair; 2013 May; 27(4):381-4. PubMed ID: 23161864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prenatal alcohol exposure reduces the size of the forelimb representation in motor cortex in rat: an intracortical microstimulation (ICMS) mapping study.
    Xie N; Yang Q; Chappell TD; Li CX; Waters RS
    Alcohol; 2010 Mar; 44(2):185-94. PubMed ID: 20083368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.