These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36711804)

  • 1. Transposon mutagenesis libraries reveal novel molecular requirements during CRISPR RNA-guided DNA integration.
    Walker MWG; Klompe SE; Zhang DJ; Sternberg SH
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel molecular requirements for CRISPR RNA-guided transposition.
    Walker MWG; Klompe SE; Zhang DJ; Sternberg SH
    Nucleic Acids Res; 2023 May; 51(9):4519-4535. PubMed ID: 37078593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of the holo CRISPR RNA-guided transposon integration complex.
    Park JU; Tsai AW; Rizo AN; Truong VH; Wellner TX; Schargel RD; Kellogg EH
    Nature; 2023 Jan; 613(7945):775-782. PubMed ID: 36442503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM.
    Park JU; Tsai AW; Chen TH; Peters JE; Kellogg EH
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2202590119. PubMed ID: 35914146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of target site selection by type V-K CRISPR-associated transposases.
    George JT; Acree C; Park JU; Kong M; Wiegand T; Pignot YL; Kellogg EH; Greene EC; Sternberg SH
    bioRxiv; 2023 Jul; ():. PubMed ID: 37503092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
    Klompe SE; Vo PLH; Halpin-Healy TS; Sternberg SH
    Nature; 2019 Jul; 571(7764):219-225. PubMed ID: 31189177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational landscape of the type V-K CRISPR-associated transposon integration assembly.
    Tenjo-Castaño F; Sofos N; Stutzke LS; Temperini P; Fuglsang A; Pape T; Mesa P; Montoya G
    Mol Cell; 2024 Jun; 84(12):2353-2367.e5. PubMed ID: 38834066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing.
    Vo PLH; Acree C; Smith ML; Sternberg SH
    Mob DNA; 2021 Jun; 12(1):13. PubMed ID: 34103093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the TnsB transposase-DNA complex of type V-K CRISPR-associated transposon.
    Tenjo-Castaño F; Sofos N; López-Méndez B; Stutzke LS; Fuglsang A; Stella S; Montoya G
    Nat Commun; 2022 Oct; 13(1):5792. PubMed ID: 36184667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insights into transposon cleavage and integration by TnsB of ShCAST system.
    Zeng T; Yin J; Liu Z; Li Z; Zhang Y; Lv Y; Lu ML; Luo M; Chen M; Xiao Y
    Cell Rep; 2023 Jul; 42(7):112698. PubMed ID: 37379212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple adaptations underly co-option of a CRISPR surveillance complex for RNA-guided DNA transposition.
    Park JU; Petassi MT; Hsieh SC; Mehrotra E; Schuler G; Budhathoki J; Truong VH; Thyme SB; Ke A; Kellogg EH; Peters JE
    Mol Cell; 2023 Jun; 83(11):1827-1838.e6. PubMed ID: 37267904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target site selection and remodelling by type V CRISPR-transposon systems.
    Querques I; Schmitz M; Oberli S; Chanez C; Jinek M
    Nature; 2021 Nov; 599(7885):497-502. PubMed ID: 34759315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of target site selection by type V-K CRISPR-associated transposases.
    George JT; Acree C; Park JU; Kong M; Wiegand T; Pignot YL; Kellogg EH; Greene EC; Sternberg SH
    Science; 2023 Nov; 382(6672):eadj8543. PubMed ID: 37972161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for the assembly of the type V CRISPR-associated transposon complex.
    Schmitz M; Querques I; Oberli S; Chanez C; Jinek M
    Cell; 2022 Dec; 185(26):4999-5010.e17. PubMed ID: 36435179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-guided engineering of type I-F CASTs for targeted gene insertion in human cells.
    Lampe GD; Liang AR; Zhang DJ; Fernández IS; Sternberg SH
    bioRxiv; 2024 Sep; ():. PubMed ID: 39345383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of diverse type I-F CRISPR-associated transposons.
    Roberts A; Nethery MA; Barrangou R
    Nucleic Acids Res; 2022 Nov; 50(20):11670-11681. PubMed ID: 36384163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system.
    Halpin-Healy TS; Klompe SE; Sternberg SH; Fernández IS
    Nature; 2020 Jan; 577(7789):271-274. PubMed ID: 31853065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of transposon end recognition explains central features of Tn7 transposition systems.
    Kaczmarska Z; Czarnocki-Cieciura M; Górecka-Minakowska KM; Wingo RJ; Jackiewicz J; Zajko W; Poznański JT; Rawski M; Grant T; Peters JE; Nowotny M
    Mol Cell; 2022 Jul; 82(14):2618-2632.e7. PubMed ID: 35654042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Associated Transposase for Targeted Mutagenesis in Diverse Proteobacteria.
    Trujillo Rodríguez L; Ellington AJ; Reisch CR; Chevrette MG
    ACS Synth Biol; 2023 Jul; 12(7):1989-2003. PubMed ID: 37368499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective TnsC recruitment enhances the fidelity of RNA-guided transposition.
    Hoffmann FT; Kim M; Beh LY; Wang J; Vo PLH; Gelsinger DR; George JT; Acree C; Mohabir JT; Fernández IS; Sternberg SH
    Nature; 2022 Sep; 609(7926):384-393. PubMed ID: 36002573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.