These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM. Park JU; Tsai AW; Chen TH; Peters JE; Kellogg EH Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2202590119. PubMed ID: 35914146 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of target site selection by type V-K CRISPR-associated transposases. George JT; Acree C; Park JU; Kong M; Wiegand T; Pignot YL; Kellogg EH; Greene EC; Sternberg SH bioRxiv; 2023 Jul; ():. PubMed ID: 37503092 [TBL] [Abstract][Full Text] [Related]
6. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Klompe SE; Vo PLH; Halpin-Healy TS; Sternberg SH Nature; 2019 Jul; 571(7764):219-225. PubMed ID: 31189177 [TBL] [Abstract][Full Text] [Related]
7. Conformational landscape of the type V-K CRISPR-associated transposon integration assembly. Tenjo-Castaño F; Sofos N; Stutzke LS; Temperini P; Fuglsang A; Pape T; Mesa P; Montoya G Mol Cell; 2024 Jun; 84(12):2353-2367.e5. PubMed ID: 38834066 [TBL] [Abstract][Full Text] [Related]
8. Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing. Vo PLH; Acree C; Smith ML; Sternberg SH Mob DNA; 2021 Jun; 12(1):13. PubMed ID: 34103093 [TBL] [Abstract][Full Text] [Related]
9. Structure of the TnsB transposase-DNA complex of type V-K CRISPR-associated transposon. Tenjo-Castaño F; Sofos N; López-Méndez B; Stutzke LS; Fuglsang A; Stella S; Montoya G Nat Commun; 2022 Oct; 13(1):5792. PubMed ID: 36184667 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic insights into transposon cleavage and integration by TnsB of ShCAST system. Zeng T; Yin J; Liu Z; Li Z; Zhang Y; Lv Y; Lu ML; Luo M; Chen M; Xiao Y Cell Rep; 2023 Jul; 42(7):112698. PubMed ID: 37379212 [TBL] [Abstract][Full Text] [Related]
11. Multiple adaptations underly co-option of a CRISPR surveillance complex for RNA-guided DNA transposition. Park JU; Petassi MT; Hsieh SC; Mehrotra E; Schuler G; Budhathoki J; Truong VH; Thyme SB; Ke A; Kellogg EH; Peters JE Mol Cell; 2023 Jun; 83(11):1827-1838.e6. PubMed ID: 37267904 [TBL] [Abstract][Full Text] [Related]
12. Target site selection and remodelling by type V CRISPR-transposon systems. Querques I; Schmitz M; Oberli S; Chanez C; Jinek M Nature; 2021 Nov; 599(7885):497-502. PubMed ID: 34759315 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of target site selection by type V-K CRISPR-associated transposases. George JT; Acree C; Park JU; Kong M; Wiegand T; Pignot YL; Kellogg EH; Greene EC; Sternberg SH Science; 2023 Nov; 382(6672):eadj8543. PubMed ID: 37972161 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for the assembly of the type V CRISPR-associated transposon complex. Schmitz M; Querques I; Oberli S; Chanez C; Jinek M Cell; 2022 Dec; 185(26):4999-5010.e17. PubMed ID: 36435179 [TBL] [Abstract][Full Text] [Related]
15. Structure-guided engineering of type I-F CASTs for targeted gene insertion in human cells. Lampe GD; Liang AR; Zhang DJ; Fernández IS; Sternberg SH bioRxiv; 2024 Sep; ():. PubMed ID: 39345383 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization of diverse type I-F CRISPR-associated transposons. Roberts A; Nethery MA; Barrangou R Nucleic Acids Res; 2022 Nov; 50(20):11670-11681. PubMed ID: 36384163 [TBL] [Abstract][Full Text] [Related]
17. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system. Halpin-Healy TS; Klompe SE; Sternberg SH; Fernández IS Nature; 2020 Jan; 577(7789):271-274. PubMed ID: 31853065 [TBL] [Abstract][Full Text] [Related]
18. Structural basis of transposon end recognition explains central features of Tn7 transposition systems. Kaczmarska Z; Czarnocki-Cieciura M; Górecka-Minakowska KM; Wingo RJ; Jackiewicz J; Zajko W; Poznański JT; Rawski M; Grant T; Peters JE; Nowotny M Mol Cell; 2022 Jul; 82(14):2618-2632.e7. PubMed ID: 35654042 [TBL] [Abstract][Full Text] [Related]