These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36711806)

  • 21. Optical characterization and adaptive optics correction of polymer adaptive lens aberrations.
    Quintavalla M; Santiago F; Bonora S; Restaino S
    Appl Opt; 2019 Jan; 58(1):158-163. PubMed ID: 30645524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping.
    Piazza S; Bianchini P; Sheppard C; Diaspro A; Duocastella M
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28700127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.
    Adie SG; Graf BW; Ahmad A; Carney PS; Boppart SA
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7175-80. PubMed ID: 22538815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.
    Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK
    Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of Zebrafish Lens Nucleus Localization and Sutural Integrity.
    Vorontsova I; Hall JE; Schilling TF
    J Vis Exp; 2019 May; (147):. PubMed ID: 31107462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo deep-brain 2-photon fluorescent microscopy labeled with near-infrared dyes excited at the 1700 nm window.
    Deng X; Ma X; Zhang W; Qin M; Xie W; Qiu P; Yin J; Wang K
    Anal Chim Acta; 2023 May; 1255():341118. PubMed ID: 37032053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping.
    Qin Z; She Z; Chen C; Wu W; Lau JKY; Ip NY; Qu JY
    Nat Biotechnol; 2022 Nov; 40(11):1663-1671. PubMed ID: 35697805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applications of adaptive optics scanning laser ophthalmoscopy.
    Roorda A
    Optom Vis Sci; 2010 Apr; 87(4):260-8. PubMed ID: 20160657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perspective of fibre-optical microendoscopy with microlenses.
    Wang B; Zhang Q; Chen X; Luan H; Gu M
    J Microsc; 2022 Nov; 288(2):87-94. PubMed ID: 33169362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ultrastructure of epithelial and fiber cells in the crystalline lens.
    Kuszak JR
    Int Rev Cytol; 1995; 163():305-50. PubMed ID: 8522422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging.
    Bigelow CE; Iftimia NV; Ferguson RD; Ustun TE; Bloom B; Hammer DX
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1327-36. PubMed ID: 17429478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-photon excited fluorescence imaging of unstained tissue using a GRIN lens endoscope.
    Huland DM; Charan K; Ouzounov DG; Jones JS; Nishimura N; Xu C
    Biomed Opt Express; 2013 May; 4(5):652-8. PubMed ID: 23667782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in adaptive optics-based two-photon fluorescence microscopy for brain imaging.
    Sahu P; Mazumder N
    Lasers Med Sci; 2020 Mar; 35(2):317-328. PubMed ID: 31729608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses.
    Wen W; Wang Y; Liu H; Wang K; Qiu P; Wang K
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28766923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lens-based wavefront sensorless adaptive optics swept source OCT.
    Jian Y; Lee S; Ju MJ; Heisler M; Ding W; Zawadzki RJ; Bonora S; Sarunic MV
    Sci Rep; 2016 Jun; 6():27620. PubMed ID: 27278853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-field-of-view imaging by multi-pupil adaptive optics.
    Park JH; Kong L; Zhou Y; Cui M
    Nat Methods; 2017 Jun; 14(6):581-583. PubMed ID: 28481364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fibre cell organization in crystalline lenses.
    Kuszak JR; Zoltoski RK; Sivertson C
    Exp Eye Res; 2004 Mar; 78(3):673-87. PubMed ID: 15106947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited].
    Pircher M; Zawadzki RJ
    Biomed Opt Express; 2017 May; 8(5):2536-2562. PubMed ID: 28663890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry.
    Dorronsoro C; Barbero S; Llorente L; Marcos S
    Optom Vis Sci; 2003 Feb; 80(2):115-25. PubMed ID: 12597326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.