These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 36711946)

  • 1. Circuit and cell-specific contributions to decision making involving risk of explicit punishment in male and female rats.
    Truckenbrod LM; Betzhold SM; Wheeler AR; Shallcross J; Singhal S; Harden S; Schwendt M; Frazier CJ; Bizon JL; Setlow B; Orsini CA
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circuit and Cell-Specific Contributions to Decision Making Involving Risk of Explicit Punishment in Male and Female Rats.
    Truckenbrod LM; Betzhold SM; Wheeler AR; Shallcross J; Singhal S; Harden S; Schwendt M; Frazier CJ; Bizon JL; Setlow B; Orsini CA
    J Neurosci; 2023 Jun; 43(26):4837-4855. PubMed ID: 37286352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making.
    Orsini CA; Hernandez CM; Singhal S; Kelly KB; Frazier CJ; Bizon JL; Setlow B
    J Neurosci; 2017 Nov; 37(48):11537-11548. PubMed ID: 29079687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex differences in sensitivity to dopamine receptor manipulations of risk-based decision making in rats.
    Wheeler AR; Truckenbrod LM; Boehnke A; Kahanek P; Orsini CA
    Neuropsychopharmacology; 2024 Dec; 49(13):1978-1988. PubMed ID: 39039141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment.
    Orsini CA; Trotta RT; Bizon JL; Setlow B
    J Neurosci; 2015 Jan; 35(4):1368-79. PubMed ID: 25632115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Dissection of Temporal Dynamics of Amygdala-Striatal Interplay during Risk/Reward Decision Making.
    Bercovici DA; Princz-Lebel O; Tse MT; Moorman DE; Floresco SB
    eNeuro; 2018; 5(6):. PubMed ID: 30627636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala.
    Larkin JD; Jenni NL; Floresco SB
    Psychopharmacology (Berl); 2016 Jan; 233(1):121-36. PubMed ID: 26432096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of basolateral amygdala and nucleus accumbens subregions to mediating motivational conflict during punished reward-seeking.
    Piantadosi PT; Yeates DCM; Wilkins M; Floresco SB
    Neurobiol Learn Mem; 2017 Apr; 140():92-105. PubMed ID: 28242266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affective and cognitive mechanisms of risky decision making.
    Shimp KG; Mitchell MR; Beas BS; Bizon JL; Setlow B
    Neurobiol Learn Mem; 2015 Jan; 117():60-70. PubMed ID: 24642448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basolateral amygdala - nucleus accumbens circuitry regulates optimal cue-guided risk/reward decision making.
    van Holstein M; MacLeod PE; Floresco SB
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Mar; 98():109830. PubMed ID: 31811876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine D1/D2 Receptor Activity in the Nucleus Accumbens Core But Not in the Nucleus Accumbens Shell and Orbitofrontal Cortex Modulates Risk-Based Decision Making.
    Mai B; Sommer S; Hauber W
    Int J Neuropsychopharmacol; 2015 Apr; 18(10):pyv043. PubMed ID: 25908669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of medial prefrontal cortex to decision making involving risk of punishment.
    Orsini CA; Heshmati SC; Garman TS; Wall SC; Bizon JL; Setlow B
    Neuropharmacology; 2018 Sep; 139():205-216. PubMed ID: 30009836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoaminergic modulation of decision-making under risk of punishment in a rat model.
    Blaes SL; Orsini CA; Mitchell MR; Spurrell MS; Betzhold SM; Vera K; Bizon JL; Setlow B
    Behav Pharmacol; 2018 Dec; 29(8):745-761. PubMed ID: 30394882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of a Lateral Orbital Frontal Cortex-Basolateral Amygdala Circuit in Cue-Induced Cocaine-Seeking Behavior.
    Arguello AA; Richardson BD; Hall JL; Wang R; Hodges MA; Mitchell MP; Stuber GD; Rossi DJ; Fuchs RA
    Neuropsychopharmacology; 2017 Feb; 42(3):727-735. PubMed ID: 27534268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altering gain of the infralimbic-to-accumbens shell circuit alters economically dissociable decision-making algorithms.
    Sweis BM; Larson EB; Redish AD; Thomas MJ
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6347-E6355. PubMed ID: 29915034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociable roles of the nucleus accumbens D1 and D2 receptors in regulating cue-elicited approach-avoidance conflict decision-making.
    Nguyen D; Fugariu V; Erb S; Ito R
    Psychopharmacology (Berl); 2018 Aug; 235(8):2233-2244. PubMed ID: 29737363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kindling of the basolateral or central nucleus of the amygdala increases suboptimal choice in a rat gambling task and increases motor impulsivity in risk-preferring animals.
    Tremblay M; Adams WK; Winstanley CA
    Behav Brain Res; 2021 Feb; 398():112941. PubMed ID: 32991928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making.
    Zalocusky KA; Ramakrishnan C; Lerner TN; Davidson TJ; Knutson B; Deisseroth K
    Nature; 2016 Mar; 531(7596):642-6. PubMed ID: 27007845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making.
    Balasubramani PP; Chakravarthy VS; Ravindran B; Moustafa AA
    Front Comput Neurosci; 2015; 9():76. PubMed ID: 26136679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inputs from the basolateral amygdala to the nucleus accumbens shell control opiate reward magnitude via differential dopamine D1 or D2 receptor transmission.
    Lintas A; Chi N; Lauzon NM; Bishop SF; Sun N; Tan H; Laviolette SR
    Eur J Neurosci; 2012 Jan; 35(2):279-90. PubMed ID: 22236063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.