These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36712336)

  • 1.
    Kuroyanagi T; Bulasag AS; Fukushima K; Ashida A; Suzuki T; Tanaka A; Camagna M; Sato I; Chiba S; Ojika M; Takemoto D
    PNAS Nexus; 2022 Nov; 1(5):pgac274. PubMed ID: 36712336
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Bulasag AS; Camagna M; Kuroyanagi T; Ashida A; Ito K; Tanaka A; Sato I; Chiba S; Ojika M; Takemoto D
    Front Plant Sci; 2023; 14():1177060. PubMed ID: 37332725
    [No Abstract]   [Full Text] [Related]  

  • 3. Botrytis cinerea detoxifies the sesquiterpenoid phytoalexin rishitin through multiple metabolizing pathways.
    Bulasag AS; Ashida A; Miura A; Pring S; Kuroyanagi T; Camagna M; Tanaka A; Sato I; Chiba S; Ojika M; Takemoto D
    Fungal Genet Biol; 2024 Jun; 172():103895. PubMed ID: 38679292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detoxification of the solanaceous phytoalexins rishitin, lubimin, oxylubimin and solavetivone via a cytochrome P450 oxygenase.
    Camagna M; Ojika M; Takemoto D
    Plant Signal Behav; 2020; 15(2):1707348. PubMed ID: 31884882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco.
    Mialoundama AS; Heintz D; Debayle D; Rahier A; Camara B; Bouvier F
    Plant Physiol; 2009 Jul; 150(3):1556-66. PubMed ID: 19420326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and biosynthetic studies on eremophilenols related to the phytoalexin capsidiol, produced by Botrytis cinerea.
    Suárez I; da Silva Lima G; Conti R; Pinedo C; Moraga J; Barúa J; de Oliveira ALL; Aleu J; Durán-Patrón R; Macías-Sánchez AJ; Hanson JR; Tallarico Pupo M; Hernández-Galán R; Collado IG
    Phytochemistry; 2018 Oct; 154():10-18. PubMed ID: 29929021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring Secretion of Capsidiol in Leaf Tissues of
    Kuroyanagi T; Camagna M; Takemoto D
    Bio Protoc; 2018 Aug; 8(15):e2954. PubMed ID: 34395763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.
    Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detoxification of cruciferous phytoalexins in Botrytis cinerea: spontaneous dimerization of a camalexin metabolite.
    Pedras MS; Hossain S; Snitynsky RB
    Phytochemistry; 2011 Feb; 72(2-3):199-206. PubMed ID: 21176925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LongSAGE gene-expression profiling of Botrytis cinerea germination suppressed by resveratrol, the major grapevine phytoalexin.
    Zheng C; Choquer M; Zhang B; Ge H; Hu S; Ma H; Chen S
    Fungal Biol; 2011 Sep; 115(9):815-32. PubMed ID: 21872179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction.
    Seifi H; De Vleesschauwer D; Aziz A; Höfte M
    Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine.
    Verhagen BW; Trotel-Aziz P; Couderchet M; Höfte M; Aziz A
    J Exp Bot; 2010; 61(1):249-60. PubMed ID: 19812243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in capsidiol sensitivity between Phytophthora infestans and Phytophthora capsici is consistent with their host range.
    Giannakopoulou A; Schornack S; Bozkurt TO; Haart D; Ro DK; Faraldos JA; Kamoun S; O'Maille PE
    PLoS One; 2014; 9(9):e107462. PubMed ID: 25203155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection.
    Song N; Ma L; Wang W; Sun H; Wang L; Baldwin IT; Wu J
    J Exp Bot; 2019 Oct; 70(20):5895-5908. PubMed ID: 31294452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in
    Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea.
    Singh R; Caseys C; Kliebenstein DJ
    Mol Plant Pathol; 2024 Jan; 25(1):e13404. PubMed ID: 38037862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved resistance against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative burst and phytoalexin production.
    Verhagen B; Trotel-Aziz P; Jeandet P; Baillieul F; Aziz A
    Phytopathology; 2011 Jul; 101(7):768-77. PubMed ID: 21425931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea.
    Sun K; van Tuinen A; van Kan JAL; Wolters AA; Jacobsen E; Visser RGF; Bai Y
    BMC Plant Biol; 2017 Dec; 17(1):235. PubMed ID: 29212470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the multitrophic interactions between the biocontrol agent Bacillus subtilis MBI 600, the pathogen Botrytis cinerea and their plant host.
    Samaras A; Karaoglanidis GS; Tzelepis G
    Microbiol Res; 2021 Jul; 248():126752. PubMed ID: 33839506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen.
    El Oirdi M; Trapani A; Bouarab K
    Environ Microbiol; 2010 Jan; 12(1):239-53. PubMed ID: 19799622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.