BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36712353)

  • 1. Fluorescence lifetime image microscopy prediction with convolutional neural networks for cell detection and classification in tissues.
    Smolen JA; Wooley KL
    PNAS Nexus; 2022 Nov; 1(5):pgac235. PubMed ID: 36712353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving fluorescence lifetime imaging microscopy phasor accuracy using convolutional neural networks.
    Mannam V; P Brandt J; Smith CJ; Yuan X; Howard S
    Front Bioinform; 2023; 3():1335413. PubMed ID: 38187910
    [No Abstract]   [Full Text] [Related]  

  • 3. Deep Learning in ex-vivo Lung Cancer Discrimination using Fluorescence Lifetime Endomicroscopic Images.
    Wang Q; Hopgood JR; Finlayson N; Williams GOS; Fernandes S; Williams E; Akram A; Dhaliwal K; Vallejo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1891-1894. PubMed ID: 33018370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and analysis of wheat spikes using Convolutional Neural Networks.
    Hasan MM; Chopin JP; Laga H; Miklavcic SJ
    Plant Methods; 2018; 14():100. PubMed ID: 30459822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Taxonomic Identification of Insects with Expert-Level Accuracy Using Effective Feature Transfer from Convolutional Networks.
    Valan M; Makonyi K; Maki A; Vondráček D; Ronquist F
    Syst Biol; 2019 Nov; 68(6):876-895. PubMed ID: 30825372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of machine learning in time-domain fluorescence lifetime imaging: a review.
    Gouzou D; Taimori A; Haloubi T; Finlayson N; Wang Q; Hopgood JR; Vallejo M
    Methods Appl Fluoresc; 2024 Feb; 12(2):. PubMed ID: 38055998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification and counting of cells in brightfield microscopy images: an application of convolutional neural networks.
    Ferreira EKGD; Silveira GF
    Sci Rep; 2024 Apr; 14(1):9031. PubMed ID: 38641688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote Sensing Image Scene Classification in Hybrid Classical-Quantum Transferring CNN with Small Samples.
    Zhang Z; Mi X; Yang J; Wei X; Liu Y; Yan J; Liu P; Gu X; Yu T
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal Species Recognition with Deep Convolutional Neural Networks from Ecological Camera Trap Images.
    Binta Islam S; Valles D; Hibbitts TJ; Ryberg WA; Walkup DK; Forstner MRJ
    Animals (Basel); 2023 May; 13(9):. PubMed ID: 37174563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Features in Backgrounds of Microscopy Images Introduce Biases in Machine Learning Analyses.
    Greenblott DN; Johann F; Snell JR; Gieseler H; Calderon CP; Randolph TW
    J Pharm Sci; 2024 May; 113(5):1177-1189. PubMed ID: 38484874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ArtSeg-Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations.
    Ali MAS; Hollo K; Laasfeld T; Torp J; Tahk MJ; Rinken A; Palo K; Parts L; Fishman D
    Sci Rep; 2022 Jul; 12(1):11404. PubMed ID: 35794119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D convolutional neural networks predict cellular metabolic pathway use from fluorescence lifetime decay data.
    Hu L; De Hoyos D; Lei Y; West AP; Walsh AJ
    APL Bioeng; 2024 Mar; 8(1):016112. PubMed ID: 38420625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classifying T cell activity in autofluorescence intensity images with convolutional neural networks.
    Wang ZJ; Walsh AJ; Skala MC; Gitter A
    J Biophotonics; 2020 Mar; 13(3):e201960050. PubMed ID: 31661592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SS-HCNN: Semi-Supervised Hierarchical Convolutional Neural Network for Image Classification.
    Chen T; Lu S; Fan J
    IEEE Trans Image Process; 2018 Dec; ():. PubMed ID: 30571625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence microscopy datasets for training deep neural networks.
    Hagen GM; Bendesky J; Machado R; Nguyen TA; Kumar T; Ventura J
    Gigascience; 2021 May; 10(5):. PubMed ID: 33954794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miffi: Improving the accuracy of CNN-based cryo-EM micrograph filtering with fine-tuning and Fourier space information.
    Xu D; Ando N
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miffi: Improving the accuracy of CNN-based cryo-EM micrograph filtering with fine-tuning and Fourier space information.
    Xu D; Ando N
    J Struct Biol; 2024 Feb; 216(2):108072. PubMed ID: 38431179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategy to improve the accuracy of convolutional neural network architectures applied to digital image steganalysis in the spatial domain.
    Tabares-Soto R; Arteaga-Arteaga HB; Mora-Rubio A; Bravo-Ortíz MA; Arias-Garzón D; Alzate Grisales JA; Burbano Jacome A; Orozco-Arias S; Isaza G; Ramos Pollan R
    PeerJ Comput Sci; 2021; 7():e451. PubMed ID: 33954236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-modal image fusion workflow incorporating MALDI imaging mass spectrometry and microscopy for the study of small pharmaceutical compounds.
    Liang Z; Guo Y; Sharma A; McCurdy CR; Prentice BM
    bioRxiv; 2024 Mar; ():. PubMed ID: 38559145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asbestos Detection with Fluorescence Microscopy Images and Deep Learning.
    Cai C; Nishimura T; Hwang J; Hu XM; Kuroda A
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.